Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (264)
  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

  • Open Access

    PROCEEDINGS

    A Digital Twin Framework for Structural Strength Monitoring

    Ziyu Xu1, Kuo Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011245

    Abstract Considering experimental testing data is costly, and sensor data is often sparse, while simulation analysis provides overall strength information with lower accuracy, a digital twin framework is proposed for full-field structural strength assessment and prediction. The framework is mainly divided into two stages. In the offline stage, the simulation model of the structure is established, and the sensor layouts are completed. Then, the DNN pre-training model is constructed based on the reduced simulation data. In the online stage, the experimentally measured data are predicted to obtain the time-series sensors data, and the traditional transfer learning… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Advanced Security for Future Mobile Internet: A Key Challenge for the Digital Transformation

    Ilsun You1,*, Xiaofeng Chen2, Vishal Sharma3, Gaurav Choudhary4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1907-1909, 2024, DOI:10.32604/cmes.2024.058939 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    REVIEW

    Digital Image Steganographer Identification: A Comprehensive Survey

    Qianqian Zhang1,2,3, Yi Zhang1,2, Yuanyuan Ma3, Yanmei Liu1,2, Xiangyang Luo1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 105-131, 2024, DOI:10.32604/cmc.2024.055735 - 15 October 2024

    Abstract The rapid development of the internet and digital media has provided convenience while also posing a potential risk of steganography abuse. Identifying steganographer is essential in tracing secret information origins and preventing illicit covert communication online. Accurately discerning a steganographer from many normal users is challenging due to various factors, such as the complexity in obtaining the steganography algorithm, extracting highly separability features, and modeling the cover data. After extensive exploration, several methods have been proposed for steganographer identification. This paper presents a survey of existing studies. Firstly, we provide a concise introduction to the More >

  • Open Access

    ARTICLE

    Research on IPFS Image Copyright Protection Method Based on Blockchain

    Xin Cong, Lanjin Feng*, Lingling Zi

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 663-684, 2024, DOI:10.32604/cmc.2024.054372 - 15 October 2024

    Abstract In the digital information age, distributed file storage technologies like the InterPlanetary File System (IPFS) have gained considerable traction as a means of storing and disseminating media content. Despite the advantages of decentralized storage, the proliferation of decentralized technologies has highlighted the need to address the issue of file ownership. The aim of this paper is to address the critical issues of source verification and digital copyright protection for IPFS image files. To this end, an innovative approach is proposed that integrates blockchain, digital signature, and blind watermarking. Blockchain technology functions as a decentralized and… More >

  • Open Access

    ARTICLE

    Cyber Security within Smart Cities: A Comprehensive Study and a Novel Intrusion Detection-Based Approach

    Mehdi Houichi1,*, Faouzi Jaidi1,2, Adel Bouhoula3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 393-441, 2024, DOI:10.32604/cmc.2024.054007 - 15 October 2024

    Abstract The expansion of smart cities, facilitated by digital communications, has resulted in an enhancement of the quality of life and satisfaction among residents. The Internet of Things (IoT) continually generates vast amounts of data, which is subsequently analyzed to offer services to residents. The growth and development of IoT have given rise to a new paradigm. A smart city possesses the ability to consistently monitor and utilize the physical environment, providing intelligent services such as energy, transportation, healthcare, and entertainment for both residents and visitors. Research on the security and privacy of smart cities is… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Overhanging Microstructures for Tunable Liquid Wettability

    Xiaojiang Liu1,*, Zhongze Gu1, Kun Zhou2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011320

    Abstract Surfaces with overhanging microstructures play an essential role in surface wettability. Typically, surfaces with tightly-distributed multiply symmetric re-entrant microstructures enable the liquid suspension toward water, oil, and even n-perfluorooctane, whose surface tension is as low as 12.0 mN/m [1-4]. In contrast, surfaces with asymmetric re-entrant microstructures are favorable for unidirectional liquid spreading, where the liquids exhibit a small contact angle on the surfaces [5]. These fantastic wettability behaviors can be attributed to three-dimensional (3D) features of the overhanging microstructures, where the edge effect and Laplace pressure difference are generated on the overhanging microstructures. Based on… More >

  • Open Access

    PROCEEDINGS

    Static and Dynamic Fracture Toughness of Graphite Materials with Varying Grain Sizes

    Sihui Tong1, Boyuan Cao1, Dongqing Tian2, Qinwei Ma1, Guangyan Liu1,*, Li Shi2, Libin Sun2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010870

    Abstract Graphite materials serve critical roles as moderators, reflectors and core structural components in high-temperature gas-cooled nuclear reactors. These materials may experience a variety of loads during the reactor operation, including thermal, radiation, fatigue and dynamic loads, potentially leading to crack initiation and propagation. Consequently, it is imperative to investigate the fracture properties of graphite materials. Currently, there exists a dearth of comprehensive studies on the fracture toughness of graphite materials with varying grain sizes, especially regarding dynamic fracture toughness. This study introduces a novel approach utilizing a digital-image-correlation-based virtual extensometer to analyze crack propagation in… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Mechanical Stirring Process in a Tannin-Based Foaming Precursor Resin

    Lan Huang1, Wenbin Yuan1, Hisham Essawy2, Xiaojian Zhou3,*, Xinyi Chen3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2219-2234, 2024, DOI:10.32604/fdmp.2024.052445 - 23 September 2024

    Abstract Tannin foam is a new functional material. It can be widely applied to the automobile industry, construction industry, and packaging industry due to its wide range of raw materials, renewable, easily degraded, low cost and almost no pollution. Preparing tannin foam is a very complex process that includes high temperature, two phases, mechanical agitation, and phase change. To investigate the influence of the stirring velocity and paddle shape, simulation was calculated by making use of the volume of fluid (VOF) method and multiple reference frame (MRF) method in a three-dimensional flow field of tannin-based foaming… More > Graphic Abstract

    Numerical Simulation of the Mechanical Stirring Process in a Tannin-Based Foaming Precursor Resin

Displaying 1-10 on page 1 of 264. Per Page