Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (366)
  • Open Access

    REVIEW

    A Systematic Review of Frameworks for the Detection and Prevention of Card-Not-Present (CNP) Fraud

    Kwabena Owusu-Mensah*, Edward Danso Ansong , Kofi Sarpong Adu-Manu, Winfred Yaokumah

    Journal of Cyber Security, Vol.8, pp. 33-92, 2026, DOI:10.32604/jcs.2026.074265 - 20 January 2026

    Abstract The rapid growth of digital payment systems and remote financial services has led to a significant increase in Card-Not-Present (CNP) fraud, which is now the primary source of card-related losses worldwide. Traditional rule-based fraud detection methods are becoming insufficient due to several challenges, including data imbalance, concept drift, privacy concerns, and limited interpretability. In response to these issues, a systematic review of twenty-four CNP fraud detection frameworks developed between 2014 and 2025 was conducted. This review aimed to identify the technologies, strategies, and design considerations necessary for adaptive solutions that align with evolving regulatory standards.… More >

  • Open Access

    ARTICLE

    Detection of KRAS, NRAS and BRAF Mutations in Liquid Biopsy from Patients with Colorectal Cancer

    Katerina Ondraskova1,2, Matous Cwik3, Ondrej Horky4, Jitka Berkovcova4, Jitka Holcakova1, Martin Bartosik1, Tomas Kazda5, Klara Mrazova1,6, Michal Uher7, Igor Kiss3, Roman Hrstka1,3,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.070116 - 19 January 2026

    Abstract Objectives: Cancer treatment relies heavily on accurate diagnosis and effective monitoring of the disease. These processes often involve invasive procedures, such as colonoscopy, to detect malignant tissues, followed by molecular analyses to determine relevant biomarkers. This study aimed to evaluate the clinical performance of droplet digital PCR (ddPCR) for detecting Kirsten Rat Sarcoma Viral Proto-Oncogene (KRAS), Neuroblastoma RAS Viral Oncogene Homolog (NRAS), and B-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) mutations in circulating tumor DNA (ctDNA) from colorectal cancer patients using liquid biopsy. Methods: ctDNA was isolated from colorectal cancer (CRC) patients (n = 110) and analyzed for KRAS, BRAF,… More >

  • Open Access

    ARTICLE

    3D Photogrammetric Modelling for Digital Twin Development: Accuracy Assessment Using UAV Multi-Altitude Imaging

    Nur Afikah Juhari, Khairul Nizam Tahar*

    Revue Internationale de Géomatique, Vol.35, pp. 1-11, 2026, DOI:10.32604/rig.2026.070991 - 19 January 2026

    Abstract The use of Unmanned Aerial Vehicles (UAVs) in photogrammetry has grown rapidly due to enhanced flight stability, high-resolution imaging, and advanced Structure from Motion (SfM) algorithms. This study investigates the potential of UAVs as a cost-effective alternative to Terrestrial Laser Scanners (TLS) for 3D building reconstruction. A 3D model of Bangunan Sarjana was generated in Agisoft Metashape Professional v.2.0.2 using 492 aerial images captured at flying altitudes of 40, 50, and 60 m. Ground control points were established using GNSS (RTK-VRS), and Total Station measurements were employed for accuracy validation. The results indicate that the 60 More >

  • Open Access

    ARTICLE

    A Dual-Stream Framework for Landslide Segmentation with Cross-Attention Enhancement and Gated Multimodal Fusion

    Md Minhazul Islam1,2, Yunfei Yin1,2,*, Md Tanvir Islam1,2, Zheng Yuan1,2, Argho Dey1,2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072550 - 12 January 2026

    Abstract Automatic segmentation of landslides from remote sensing imagery is challenging because traditional machine learning and early CNN-based models often fail to generalize across heterogeneous landscapes, where segmentation maps contain sparse and fragmented landslide regions under diverse geographical conditions. To address these issues, we propose a lightweight dual-stream siamese deep learning framework that integrates optical and topographical data fusion with an adaptive decoder, guided multimodal fusion, and deep supervision. The framework is built upon the synergistic combination of cross-attention, gated fusion, and sub-pixel upsampling within a unified dual-stream architecture specifically optimized for landslide segmentation, enabling efficient… More >

  • Open Access

    ARTICLE

    Research on the Classification of Digital Cultural Texts Based on ASSC-TextRCNN Algorithm

    Zixuan Guo1, Houbin Wang2, Sameer Kumar1,*, Yuanfang Chen3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072064 - 12 January 2026

    Abstract With the rapid development of digital culture, a large number of cultural texts are presented in the form of digital and network. These texts have significant characteristics such as sparsity, real-time and non-standard expression, which bring serious challenges to traditional classification methods. In order to cope with the above problems, this paper proposes a new ASSC (ALBERT, SVD, Self-Attention and Cross-Entropy)-TextRCNN digital cultural text classification model. Based on the framework of TextRCNN, the Albert pre-training language model is introduced to improve the depth and accuracy of semantic embedding. Combined with the dual attention mechanism, the… More >

  • Open Access

    REVIEW

    Toward Robust Deepfake Defense: A Review of Deepfake Detection and Prevention Techniques in Images

    Ahmed Abdel-Wahab1, Mohammad Alkhatib2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070010 - 09 December 2025

    Abstract Deepfake is a sort of fake media made by advanced AI methods like Generative Adversarial Networks (GANs). Deepfake technology has many useful uses in education and entertainment, but it also raises a lot of ethical, social, and security issues, such as identity theft, the dissemination of false information, and privacy violations. This study seeks to provide a comprehensive analysis of several methods for identifying and circumventing Deepfakes, with a particular focus on image-based Deepfakes. There are three main types of detection methods: classical, machine learning (ML) and deep learning (DL)-based, and hybrid methods. There are… More >

  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    PROCEEDINGS

    Study on Friction Behavior of Soft Material Based on Predictive Modeling and Interfacial Tribometry

    Huixin Wei, Baopeng Liao*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012367

    Abstract Friction behavior at soft-hard material interfaces plays a pivotal role in applications spanning biomedical devices, robotics, and tactile systems. While theoretical frameworks and experimental characterization methods have advanced, it is still difficult to unravel interfacial mechanisms. In this study, a theoretical model is firstly developed to predict static-to-sliding transitions by analyzing geometric evolution and stick-slip dynamics at soft material interfaces. The model quantitatively determines the threshold force for slip initiation, offering predictive insights into The sliding behavior of the interface. Second, an innovative tribometry platform is introduced, combining synchronized optical visualization, mechanical loading, and automated More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Failure Mechanics Theory and Digital Applications

    Pengfei Cui*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010832

    Abstract With the continuous advancement of aerospace equipment, in addition to performance, function, and reliability requirements, durability is playing an increasingly crucial role. For instance, the objective of China's new - generation space transportation system is to achieve a reliability of 0.9999 or higher for manned flights, and a single rocket is expected to be capable of up to 100 flights. In high - temperature load - bearing structures, nickel - based alloys are extensively used because of their outstanding strength, fatigue resistance, and creep properties. In advanced aerospace engines, their mass fraction can reach as… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Microscopic Seepage Mechanisms in Gas Reservoir Storage Systems

    Yulong Zhao1, Yang Luo1,*, Yuming Luo2, Yulai Pang2, Ruihan Zhang1, Zihan Zhao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3073-3090, 2025, DOI:10.32604/fdmp.2025.070685 - 31 December 2025

    Abstract The development of underground gas storage (UGS) systems is vital for maintaining stability between energy supply and demand. This study explores the dynamic response mechanisms of carbonate reservoirs subjected to intense injection–production cycling during UGS operations. By integrating three-dimensional digital core technology with a coupled poro-mechanical model, we simulate the pore-scale behavior of a representative Huangcaoxia UGS carbonate core. The results demonstrate that fluid–solid coupling effects markedly amplify permeability reduction, far exceeding the influence of porosity variations alone. More significantly, gas production leads to a pronounced decline in permeability driven by rising effective stress, arising More >

Displaying 1-10 on page 1 of 366. Per Page