Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Knockdown of Rap1b Enhances Apoptosis and Autophagy in Gastric Cancer Cells via the PI3K/Akt/mTOR Pathway

    Yazhou Li*†, Yang Liu, Feiyu Shi, Liang Cheng, Junjun She

    Oncology Research, Vol.24, No.5, pp. 287-293, 2016, DOI:10.3727/096504016X14648701447779

    Abstract Gastric cancer (GC) is the fourth most common malignancy and the second leading cause of cancer mortality around the world. However, the regulatory mechanisms of GC tumorigenesis and cancer cell motility are completely unknown. We investigated the role of a RAS-related protein (Rap1b) in the progression of GC. Our results showed that the expression of Rap1b is aberrantly upregulated in GC tissue samples and human GC cell lines, and the high expression of Rap1b indicated a positive correlation with poor prognosis in patients with GC. Inhibition of endogenous Rap1b dramatically reduced the cell cycle progression… More >

  • Open Access

    ARTICLE

    YEATS Domain Containing 4 Promotes Gastric Cancer Cell Proliferation and Mediates Tumor Progression via Activating the Wnt/β-Catenin Signaling Pathway

    Sheqing Ji*, Youxiang Zhang, Binhai Yang

    Oncology Research, Vol.25, No.9, pp. 1633-1641, 2017, DOI:10.3727/096504017X14878528144150

    Abstract Increased expression of YEATS domain containing 4 (YEATS4) has been reported to have a correlation with progression in many types of cancer. However, the mechanism by which it promotes the development of gastric cancer (GC) is rarely reported. This study aimed to investigate the effect of YEATS4 on cell proliferation and tumor progression. The mRNA and protein expressions of YEATS4 in GC tissues and cell lines were analyzed. BGC-823 cells then overexpressed or silenced YEATS4 by transfection of different plasmids. The regulatory effect of YEATS on cell viability, colony formation, cell apoptosis, and tumor growth… More >

  • Open Access

    ARTICLE

    LINC00052 Promotes Gastric Cancer Cell Proliferation and Metastasis via Activating the Wnt/β-Catenin Signaling Pathway

    Yuqiang Shan1, Rongchao Ying1, Zhong Jia, Wencheng Kong, Yi Wu, Sixin Zheng, Huicheng Jin

    Oncology Research, Vol.25, No.9, pp. 1589-1599, 2017, DOI:10.3727/096504017X14897896412027

    Abstract Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. The etiology of GC is complex, and much more attention should be paid to genetic factors. In this study, we explored the role and function of LINC00052 in GC. We applied qRT-PCR and Northern blot to detect the expression of LINC00052 and found it was highly expressed during GC. We also investigated the effects of LINC00052 on tumor prognosis and progression and found that LINC00052 indicated poor prognosis and tumor progression. By performing MTT, colony formation, and Transwell assays, we… More >

  • Open Access

    ARTICLE

    Basic Transcription Factor 3 Is Required for Proliferation and Epithelial–Mesenchymal Transition via Regulation of FOXM1 and JAK2/STAT3 Signaling in Gastric Cancer

    De-Zhong Zhang*, Bing-He Chen*, Lan-Fang Zhang, Ming-Kun Cheng, Xiang-Jie Fang*, Xin-Jun Wu*

    Oncology Research, Vol.25, No.9, pp. 1453-1462, 2017, DOI:10.3727/096504017X14886494526344

    Abstract Gastric cancer (GC) is the most common epithelial malignancy worldwide. Basic transcription factor 3 (BTF3) plays a crucial role in the regulation of various biological processes. We designed experiments to investigate the molecular mechanism underlying the role of BTF3 in GC cell proliferation and metastasis. We confirmed that BTF3 expression was decreased in GC tissues and several GC cell lines. Lentivirus-mediated downregulation of BTF3 reduced cell proliferation, induced S and G2/M cell cycle arrest, and increased apoptosis. Knockdown of BTF3 significantly reduced the expression of Forkhead box M1 (FOXM1). Upregulation of FOXM1 significantly inhibited the decrease… More >

  • Open Access

    ARTICLE

    Gastrin Enhances Autophagy and Promotes Gastric Carcinoma Proliferation via Inducing AMPKα

    Zhuang Kun*†, Guo Hanqing*, Tang Hailing*, Yan Yuan*, Zhang Jun, Zhang Lingxia*, Han Kun*, Zhang Xin*

    Oncology Research, Vol.25, No.8, pp. 1399-1407, 2017, DOI:10.3727/096504016X14823648620870

    Abstract Gastric cancer (GC) is one of the most frequent epithelial malignancies worldwide. The gastrointestinal (GI) peptide gastrin is an important regulator of the secretion and release of gastric acid from stomach parietal cells, and it also plays a vital role in the development and progression of GC. The aim of the current study was to investigate the role and underlying mechanism of gastrin and autophagy in regulating GC tumorigenesis. Gastrin-17 amide (G-17) was applied in the GC cell lines SGC7901 and MGC-803. The results showed that G-17 maintained the high viability of SGC7901 and MGC-803.… More >

  • Open Access

    ARTICLE

    miR-326 Inhibits Gastric Cancer Cell Growth Through Downregulating NOB1

    Sheqing Ji, Bin Zhang, Ye Kong, Fei Ma, Yawei Hua

    Oncology Research, Vol.25, No.6, pp. 853-861, 2017, DOI:10.3727/096504016X14759582767486

    Abstract MicroRNAs (miRNAs) play a crucial role in the development and progression of human cancers, including gastric cancer (GC). The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of GC. In this study, we aimed to investigate the role of miR-326 in the development and progression of GC. Quantitative PCR (qPCR) was used to measure the expression level of miR-326 in GC tissues and cell lines. We found that miR-326 was significantly downregulated during GC. In addition, overexpression of miR-326 inhibited GC cell proliferation. Fluorescence-activated cell sorting More >

  • Open Access

    ARTICLE

    Oxysterol-Binding Protein-Related Protein 8 Inhibits Gastric Cancer Growth Through Induction of ER Stress, Inhibition of Wnt Signaling, and Activation of Apoptosis

    Xiaohe Guo*, Lanfang Zhang*, Yingying Fan*, Dezhong Zhang, Lei Qin*, Shuping Dong*, Guangyan Li*

    Oncology Research, Vol.25, No.5, pp. 799-808, 2017, DOI:10.3727/096504016X14783691306605

    Abstract Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. Oxysterol-binding proteinrelated protein 8 (ORP8) functions as a sterol sensor that regulates a number of cellular functions. We showed that ORP8 expression was significantly lower in GC tissues and cells. Overexpression of ORP8 significantly inhibited GC cell proliferation in several GC cells. The formation of colonies in AGS cells was inhibited by the overexpression of ORP8. Moreover, overexpression of ORP8 significantly decreased implanted tumor growth in nude mice. Overexpression of ORP8 resulted in a significant increase in CHOP and GRP78 expression and the… More >

  • Open Access

    ARTICLE

    Long Noncoding RNA Taurine-Upregulated Gene 1 Promotes Cell Proliferation and Invasion in Gastric Cancer via Negatively Modulating miRNA-145-5p

    Kewei Ren*†‡, Zhen Li*†‡, Yahua Li*†‡, Wenzhe Zhang*†‡, Xinwei Han*†‡

    Oncology Research, Vol.25, No.5, pp. 789-798, 2017, DOI:10.3727/096504016X14783677992682

    Abstract Long noncoding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) is involved in the development and carcinogenesis of various tumors, suggesting the diagnostic potential of TUG1 in these cancers. However, the exact role of TUG1 and its underlying mechanism in gastric cancer (GC) remain unknown. In this study, the expression of TUG1 and miR-145-5p in GC cell lines and nonmalignant gastric epithelial cell lines was detected by qRT-PCR. BGC-823 and SGC-7901 cells were transfected with si-TUG1, pcDNA 3.1-TUG1, miR-145-5p mimics, or matched controls. The biological function of TUG1 and miR-145-5p in GC cell proliferation and invasion in… More >

  • Open Access

    ARTICLE

    Fibroblast Activation Protein-α-Positive Fibroblasts Promote Gastric Cancer Progression and Resistance to Immune Checkpoint Blockade

    Xuyang Wen*, Xiaoping He, Feng Jiao, Chunhui Wang§, Yang Sun, Xuequn Ren, Qianwen Li*

    Oncology Research, Vol.25, No.4, pp. 629-640, 2017, DOI:10.3727/096504016X14768383625385

    Abstract Gastric cancer (GC) is one of the main causes of cancer death. The tumor microenvironment has a profound effect on inducing tumor growth, metastasis, and immunosuppression. Fibroblast activation protein-a (FAP) is a protein that is usually expressed in fibroblasts, such as cancer-associated fibroblasts, which are major components of the tumor microenvironment. However, the role of FAP in GC progression and treatment is still unknown. In this study, we explored these problems based on GC patient samples and experimental models. We found that high FAP expression was an independent prognosticator of poor survival in GC patients. More >

  • Open Access

    ARTICLE

    MicroRNA-509-3p Inhibits Cancer Cell Proliferation and Migration via Upregulation of XIAP in Gastric Cancer Cells

    Jihong Sun*†1, Jingjing Li‡1, Weiguo Zhang*, Juan Zhang*, Shenjie Sun*, Guiqi Li*, Hengliang Song*, Daguo Wan*

    Oncology Research, Vol.25, No.3, pp. 455-461, 2017, DOI:10.3727/096504016X14747283032017

    Abstract Gastric cancer (GC) is the fourth most common cancer globally. Recently, microRNAs (miRNAs) have been suggested to be closely associated with tumorigenesis. Aberrant expression of miR-509-3p has been reported in cancer studies. However, the expression and mechanism of its function in GC remain unclear. Here we showed that miR-509-3p was downregulated in GC specimens, which was associated with overall survival. Functional investigations demonstrated that the overexpression of miR-509-3p inhibited the migration and proliferation of the GC cells. Additionally, we identified X-linked inhibitor of apoptosis protein (XIAP) as a direct target of miR-509-3p. Knockdown of XIAP More >

Displaying 1-10 on page 1 of 21. Per Page