Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Collaboration of GTCC-Powered CAES with Residual Compression Heat for Gas Turbine Inlet Air Heating

    Cheng Yang*, Hanjie Qi, Qing Yin

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070957 - 27 January 2026

    Abstract In order to enhance the off-peak performance of gas turbine combined cycle (GTCC) units, a novel collaborative power generation system (CPG) was proposed. During off-peak operation periods, the remaining power of the GTCC was used to drive the adiabatic compressed air energy storage (ACAES), while the intake air of the GTCC was heated by the compression heat of the ACAES. Based on a 67.3 MW GTCC, under specific demand load distribution, a CPG system and a benchmark system (BS) were designed, both of which used 9.388% of the GTCC output power to drive the ACAES.… More >

  • Open Access

    ARTICLE

    Influence of the Ambient Temperature on the Efficiency of Gas Turbines

    Mahdi Goucem*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2265-2279, 2024, DOI:10.32604/fdmp.2024.052365 - 23 September 2024

    Abstract In hot and arid regions like the Saharan area, effective methods for cooling and humidifying intake air are essential. This study explores the utilization of a water trickle cooler as a promising solution to meet this objective. In particular, the HASSI MESSAOUD area is considered as a testbed. The water trickle cooler is chosen for its adaptability to arid conditions. Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor. The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius, enhancing mass flow rate dynamics by 3 percent More >

Displaying 1-10 on page 1 of 2. Per Page