Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    The Influence of Saturated and Bilinear Incidence Functions on the Dynamical Behavior of HIV Model Using Galerkin Scheme Having a Polynomial of Order Two

    Attaullah1,*, Kamil Zeb1, Abdullah Mohamed2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1661-1685, 2023, DOI:10.32604/cmes.2023.023059 - 06 February 2023

    Abstract Mathematical modelling has been extensively used to measure intervention strategies for the control of contagious conditions. Alignment between different models is pivotal for furnishing strong substantiation for policymakers because the differences in model features can impact their prognostications. Mathematical modelling has been widely used in order to better understand the transmission, treatment, and prevention of infectious diseases. Herein, we study the dynamics of a human immunodeficiency virus (HIV) infection model with four variables: S (t), I (t), C (t), and A (t) the susceptible individuals; HIV infected individuals (with no clinical symptoms of AIDS); HIV… More >

  • Open Access

    ARTICLE

    Numerical Solution of System of N–Coupled Nonlinear Schrödinger Equations via Two Variants of the Meshless Local Petrov–Galerkin (MLPG) Method

    M. Dehghan1, M. Abbaszadeh2, A. Mohebbi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 399-444, 2014, DOI:10.3970/cmes.2014.100.399

    Abstract In this paper three numerical techniques are proposed for solving the system of N-coupled nonlinear Schrödinger (CNLS) equations. Firstly, we obtain a time discrete scheme by approximating the first-order time derivative via the forward finite difference formula, then for obtaining a full discretization scheme, we use the Kansa’s approach to approximate the spatial derivatives via radial basis functions (RBFs) collocation methodology. We introduce the moving least squares (MLS) approximation and radial point interpolation method (RPIM) with their shape functions, separately. It should be noted that the shape functions of RPIM unlike the shape functions of the… More >

Displaying 1-10 on page 1 of 2. Per Page