Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,077)
  • Open Access

    ARTICLE

    Spatio-Temporal Monitoring and Assessment of Groundwater Quality for Domestic and Agricultural Use in Kurukshetra District, Haryana, India

    Aakash Deep*, Sushil Kumar, Bhagwan Singh Chaudhary

    Revue Internationale de Géomatique, Vol.35, pp. 79-100, 2026, DOI:10.32604/rig.2026.074969 - 05 February 2026

    Abstract The assessment of groundwater quality is crucial for ensuring its safe and sustainable use for domestic and agricultural purposes. The Kurukshetra district in the Indian state of Haryana relies heavily on groundwater to meet household and agricultural needs. Sustainable groundwater management must be assessed in terms of suitability for domestic and agricultural needs in a region. The current study analyzed pre-monsoon geochemical data from groundwater samples in the study area for 1991, 2000, 2010, and 2020. A Geographic Information System (GIS) was used to create spatial distribution maps for hydrogen ion concentration, total hardness, total… More >

  • Open Access

    ARTICLE

    Analysis of Annual Rainfall and Annual Number of Rainy Days in the Research for Indices of Climate Change in the Zambezian Phytogeographic Region

    N’Landu Dikumbwa1,*, Scott Tshibang Nawej2, Gabriel Mutundo Teteka2, Benjamin Mayaka Kibwila3, Jules Aloni Komanda3

    Revue Internationale de Géomatique, Vol.35, pp. 13-30, 2026, DOI:10.32604/rig.2026.068019 - 05 February 2026

    Abstract Rainfall data from four weather stations, quite far from each other, but located in the Zambezian phytogeographic region, were analysed for the research for indices of climate change. Two variables, rainfall and the annual number of rainy days, were considered. The rainfall data examined are 114 years for Luanda (1901–2014), 106 years for Lubumbashi (1916–2021), respectively, 54 and 41 years for Huambo (1961–2014) and Boma (1981–2021); 100 years (1921–2021) for the annual number of rainy days for only the Lubumbashi weather station. The results were a widespread decline in rainfall at all weather stations. Despite… More >

  • Open Access

    ARTICLE

    Selection of Conservation Practices in Different Vineyards Impacts Soil, Vines and Grapes Quality Attributes

    Antonios Chrysargyris1,*, Demetris Antoniou2, Timos Boyias2, Nikolaos Tzortzakis1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.076565 - 30 January 2026

    Abstract Cyprus has an extensive record in grape production and winemaking. Grapevine is essential for the economic and environmental sustainability of the agricultural sector, as it is in other Mediterranean regions. Intensive agriculture can overuse and exhaust natural resources, including soil and water. The current study evaluated how conservation strategies, including no tillage and semi-tillage (as a variation of strip tillage), affected grapevine growth and grape quality when compared to conventional tillage application. Two cultivars were used: Chardonnay and Maratheftiko (indigenous). Soil pH decreased, and EC increased after tillage applications, in both vineyards. Tillage lowered soil… More >

  • Open Access

    ARTICLE

    Integrative Analysis of Genetic-Ecological Factors Shaping Epimedium Chemical Diversity

    Ziying Huang1, Ruikang Ma1, Anning Li2, Yufei Cheng1, Xiaolin Lin2, Mengzhi Li3, Yu Zhang2, Liping Shi1, Linlin Dong1,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.074419 - 30 January 2026

    Abstract Epimedium is commonly used to treat bone injury and kidney disease, with prenylated flavonol glycosides (PFGs) as its active ingredients. It has attracted much attention due to prominent healthcare and therapeutic effects, but faces problems of adulteration with closely related species and confusion about geographical origins. In this study, multiple technical approaches were employed to identify its genetic characteristics and metabolic differences. Based on DNA barcoding, 20 batches of samples were analyzed. The genetic distances of matK, ITS and psbA-trnH within species were all smaller than those between species, and psbA-trnH along with ITS + psbA-trnH proved most effective… More >

  • Open Access

    ARTICLE

    Exploring the Framework of Online Music Use for Motivation of Studies and Gratification Needs for Students’ Well-Being

    Muhammad Ali Malik1, Koo Ah Choo1,2, Hawa Rahmat3,*, Elyna Amir Sharji1,2, Teoh Sian Hoon4, Sabariah Eni5, Lim Kok Yoong6

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073109 - 28 January 2026

    Abstract Background: Music has proven to be vital in enhancing resilience and promoting well-being. Previously, the impact of music in sports environments was solely investigated, while this paper applies it to study environments, standing out as pioneering research. The study consists of a systematic development of a conceptual framework based on theories of Uses and Gratification Expectancy (UGE) and perceived motivation based on music elements. Their components are observed variables influencing students’ psychological well-being (as the dependent variable). Resilience is examined as a mediator, influencing the relationships of both observed and dependent variables. The main purpose of… More >

  • Open Access

    ARTICLE

    A Subdomain-Based GPU Parallel Scheme for Accelerating Perdynamics Modeling with Reduced Graphics Memory

    Zuokun Yang1, Jun Li1,2,*, Xin Lai1,2, Lisheng Liu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075980 - 29 January 2026

    Abstract Peridynamics (PD) demonstrates unique advantages in addressing fracture problems, however, its nonlocality and meshfree discretization result in high computational and storage costs. Moreover, in its engineering applications, the computational scale of classical GPU parallel schemes is often limited by the finite graphics memory of GPU devices. In the present study, we develop an efficient particle information management strategy based on the cell-linked list method and on this basis propose a subdomain-based GPU parallel scheme, which exhibits outstanding acceleration performance in specific compute kernels while significantly reducing graphics memory usage. Compared to the classical parallel scheme,… More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Deep Learning Architectures for AI-Assisted Breast Cancer Detection in Mammography Using the MammosighTR Dataset: A Nationwide Turkish Screening Study (2016–2022)

    Nuh Azginoglu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075834 - 29 January 2026

    Abstract Breast cancer screening programs rely heavily on mammography for early detection; however, diagnostic performance is strongly affected by inter-reader variability, breast density, and the limitations of conventional computer-aided detection systems. Recent advances in deep learning have enabled more robust and scalable solutions for large-scale screening, yet a systematic comparison of modern object detection architectures on nationally representative datasets remains limited. This study presents a comprehensive quantitative comparison of prominent deep learning–based object detection architectures for Artificial Intelligence-assisted mammography analysis using the MammosighTR dataset, developed within the Turkish National Breast Cancer Screening Program. The dataset comprises… More >

  • Open Access

    REVIEW

    GNN: Core Branches, Integration Strategies and Applications

    Wenfeng Zheng1, Guangyu Xu2, Siyu Lu3, Junmin Lyu4, Feng Bao5,*, Lirong Yin6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075741 - 29 January 2026

    Abstract Graph Neural Networks (GNNs), as a deep learning framework specifically designed for graph-structured data, have achieved deep representation learning of graph data through message passing mechanisms and have become a core technology in the field of graph analysis. However, current reviews on GNN models are mainly focused on smaller domains, and there is a lack of systematic reviews on the classification and applications of GNN models. This review systematically synthesizes the three canonical branches of GNN, Graph Convolutional Network (GCN), Graph Attention Network (GAT), and Graph Sampling Aggregation Network (GraphSAGE), and analyzes their integration pathways More >

  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning in Mental-Health Risk Assessment

    Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,*, Seungmin Rho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075119 - 29 January 2026

    Abstract Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm, long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances, detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper presents a Continual Neuro-Symbolic Graph… More >

Displaying 1-10 on page 1 of 4077. Per Page