Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    Advancement in CFD and Responsive AI to Examine Cardiovascular Pulsatile Flow in Arteries: A Review

    Priyambada Praharaj1,*, Chandrakant R. Sonawane2,*, Arunkumar Bongale2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2021-2064, 2024, DOI:10.32604/cmes.2024.056289 - 31 October 2024

    Abstract This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics (CFD) in biomedical applications. Beyond its various engineering applications, CFD has started to establish a presence in the biomedical field. Cardiac abnormality, a familiar health issue, is an essential point of investigation by research analysts. Diagnostic modalities provide cardiovascular structural information but give insufficient information about the hemodynamics of blood. The study of hemodynamic parameters can be a potential measure for determining cardiovascular abnormalities. Numerous studies have explored the rheological behavior of blood experimentally and numerically.… More >

  • Open Access

    PROCEEDINGS

    GPU-Accelerated Numerical Modeling of Hypervelocity Impacts on CFRP Using SPH

    Yao Lu1, Jianyu Chen2, Dianlei Feng3,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010004

    Abstract CFRPs (carbon fiber reinforced plastics), as a kind of fiber-reinforced plastic, present various advantages over traditional materials regarding the specific strength, stiffness, and corrosion resistance. For this reason, CFRPs are widely used in the space industry, like satellites and space stations, which are easily subjected to the HVIs (hypervelocity impacts) threatened by space debris. In order to mitigate the damage of HVIs and protect the spatial structures, it is necessary to predict the HVI process on CFRPs. Smoothed particle hydrodynamics (SPH) method, as a mesh-free particle-based method, has been widely applied for modeling HVI problems… More >

Displaying 1-10 on page 1 of 2. Per Page