Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization

    Tianyuan Qi1, Junpeng Zhao1,2,*, Chunjie Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 127-151, 2025, DOI:10.32604/cmes.2025.070769 - 30 October 2025

    Abstract A major bottleneck in large-scale eigenfrequency topology optimization is the repeated solution of the generalized eigenvalue problem. This work presents an efficient graphics processing unit (GPU) solver for three-dimensional (3D) topology optimization that maximizes the fundamental eigenfrequency. The Successive Iteration of Analysis and Design (SIAD) framework is employed to avoid solving a full eigenproblem at every iteration. The sequential approximation of the eigenpairs is solved by the GPU-accelerated multigrid-preconditioned conjugate gradient (MGPCG) method to efficiently improve the eigenvectors along with the topological evolution. The cluster-mean approach is adopted to address the non-differentiability issue caused by… More > Graphic Abstract

    An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization

  • Open Access

    ARTICLE

    MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles

    Fengju Zhang1, Kai Zhu2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2353-2372, 2025, DOI:10.32604/cmc.2024.058944 - 17 February 2025

    Abstract The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2,… More >

  • Open Access

    ARTICLE

    EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems

    Zhenjiang Dong1, Xin Ge1, Yuehua Huang1, Jiankuo Dong1, Jiang Xu2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4021-4044, 2024, DOI:10.32604/cmc.2024.049233 - 20 June 2024

    Abstract This paper presents a comprehensive exploration into the integration of Internet of Things (IoT), big data analysis, cloud computing, and Artificial Intelligence (AI), which has led to an unprecedented era of connectivity. We delve into the emerging trend of machine learning on embedded devices, enabling tasks in resource-limited environments. However, the widespread adoption of machine learning raises significant privacy concerns, necessitating the development of privacy-preserving techniques. One such technique, secure multi-party computation (MPC), allows collaborative computations without exposing private inputs. Despite its potential, complex protocols and communication interactions hinder performance, especially on resource-constrained devices. Efforts… More >

  • Open Access

    ARTICLE

    An Improved Graphics Processing Unit Acceleration Approach for Three-Dimensional Structural Topology Optimization Using the Element-Free Galerkin Method

    Haishan Lu, Shuguang Gong*, Jianping Zhang, Guilan Xie, Shuohui Yin

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1151-1178, 2021, DOI:10.32604/cmes.2021.016165 - 11 August 2021

    Abstract We proposed an improved graphics processing unit (GPU) acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin (EFG) method. This method can effectively eliminate the race condition under parallelization. We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model. We explored the GPU parallel algorithm of assembling stiffness matrix, solving discrete equation, analyzing sensitivity, and updating design variables in detail. We also proposed a node pair-wise method for assembling the stiffness matrix and a node-wise method for sensitivity analysis to eliminate race conditions More >

Displaying 1-10 on page 1 of 4. Per Page