Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

    Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3, Shuting Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1103-1137, 2024, DOI:10.32604/cmes.2023.029177

    Abstract This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify the hybrid parallel strategy in this paper. The results… More > Graphic Abstract

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

  • Open Access

    PROCEEDINGS

    GPU-Accelerated Numerical Modeling of Hypervelocity Impacts on CFRP Using SPH

    Yao Lu1, Jianyu Chen2, Dianlei Feng3,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010004

    Abstract CFRPs (carbon fiber reinforced plastics), as a kind of fiber-reinforced plastic, present various advantages over traditional materials regarding the specific strength, stiffness, and corrosion resistance. For this reason, CFRPs are widely used in the space industry, like satellites and space stations, which are easily subjected to the HVIs (hypervelocity impacts) threatened by space debris. In order to mitigate the damage of HVIs and protect the spatial structures, it is necessary to predict the HVI process on CFRPs. Smoothed particle hydrodynamics (SPH) method, as a mesh-free particle-based method, has been widely applied for modeling HVI problems due to its special advantages… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves, is simulated to validate this… More >

  • Open Access

    ARTICLE

    3D Model Occlusion Culling Optimization Method Based on WebGPU Computing Pipeline

    Liming Ye1,2, Gang Liu1,2,3,4,*, Genshen Chen1,2, Kang Li1,2, Qiyu Chen1,2,3, Wenyao Fan1,2, Junjie Zhang1,2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2529-2545, 2023, DOI:10.32604/csse.2023.041488

    Abstract Nowadays, Web browsers have become an important carrier of 3D model visualization because of their convenience and portability. During the process of large-scale 3D model visualization based on Web scenes with the problems of slow rendering speed and low FPS (Frames Per Second), occlusion culling, as an important method for rendering optimization, can remove most of the occluded objects and improve rendering efficiency. The traditional occlusion culling algorithm (TOCA) is calculated by traversing all objects in the scene, which involves a large amount of repeated calculation and time consumption. To advance the rendering process and enhance rendering efficiency, this paper… More >

  • Open Access

    ARTICLE

    Accelerating Falcon Post-Quantum Digital Signature Algorithm on Graphic Processing Units

    Seog Chung Seo1, Sang Woo An2, Dooho Choi3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1963-1980, 2023, DOI:10.32604/cmc.2023.033910

    Abstract Since 2016, the National Institute of Standards and Technology (NIST) has been performing a competition to standardize post-quantum cryptography (PQC). Although Falcon has been selected in the competition as one of the standard PQC algorithms because of its advantages in short key and signature sizes, its performance overhead is larger than that of other lattice-based cryptosystems. This study presents multiple methodologies to accelerate the performance of Falcon using graphics processing units (GPUs) for server-side use. Direct GPU porting significantly degrades performance because the Falcon reference codes require recursive functions in its sampling process. Thus, an iterative sampling approach for efficient… More >

  • Open Access

    ARTICLE

    A Construction of Object Detection Model for Acute Myeloid Leukemia

    K. Venkatesh1,*, S. Pasupathy1, S. P. Raja2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 543-560, 2023, DOI:10.32604/iasc.2023.030701

    Abstract The evolution of bone marrow morphology is necessary in Acute Myeloid Leukemia (AML) prediction. It takes an enormous number of times to analyze with the standardization and inter-observer variability. Here, we proposed a novel AML detection model using a Deep Convolutional Neural Network (D-CNN). The proposed Faster R-CNN (Faster Region-Based CNN) models are trained with Morphological Dataset. The proposed Faster R-CNN model is trained using the augmented dataset. For overcoming the Imbalanced Data problem, data augmentation techniques are imposed. The Faster R-CNN performance was compared with existing transfer learning techniques. The results show that the Faster R-CNN performance was significant… More >

  • Open Access

    ARTICLE

    Efficient UAV-Based MEC Using GPU-Based PSO and Voronoi Diagrams

    Mohamed H. Mousa1,2,*, Mohamed K. Hussein2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 413-434, 2022, DOI:10.32604/cmes.2022.020639

    Abstract Mobile-Edge Computing (MEC) displaces cloud services as closely as possible to the end user. This enables the edge servers to execute the offloaded tasks that are requested by the users, which in turn decreases the energy consumption and the turnaround time delay. However, as a result of a hostile environment or in catastrophic zones with no network, it could be difficult to deploy such edge servers. Unmanned Aerial Vehicles (UAVs) can be employed in such scenarios. The edge servers mounted on these UAVs assist with task offloading. For the majority of IoT applications, the execution times of tasks are often… More >

  • Open Access

    ARTICLE

    Real-time Volume Preserving Constraints for Volumetric Model on GPU

    Hongly Va1, Min-Hyung Choi2, Min Hong3,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 831-848, 2022, DOI:10.32604/cmc.2022.029576

    Abstract This paper presents a parallel method for simulating real-time 3D deformable objects using the volume preservation mass-spring system method on tetrahedron meshes. In general, the conventional mass-spring system is manipulated as a force-driven method because it is fast, simple to implement, and the parameters can be controlled. However, the springs in traditional mass-spring system can be excessively elongated which cause severe stability and robustness issues that lead to shape restoring, simulation blow-up, and huge volume loss of the deformable object. In addition, traditional method that uses a serial process of the central processing unit (CPU) to solve the system in… More >

  • Open Access

    ARTICLE

    Resource Scheduling Strategy for Performance Optimization Based on Heterogeneous CPU-GPU Platform

    Juan Fang1,*, Kuan Zhou1, Mengyuan Zhang1, Wei Xiang2,3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1621-1635, 2022, DOI:10.32604/cmc.2022.027147

    Abstract In recent years, with the development of processor architecture, heterogeneous processors including Center processing unit (CPU) and Graphics processing unit (GPU) have become the mainstream. However, due to the differences of heterogeneous core, the heterogeneous system is now facing many problems that need to be solved. In order to solve these problems, this paper try to focus on the utilization and efficiency of heterogeneous core and design some reasonable resource scheduling strategies. To improve the performance of the system, this paper proposes a combination strategy for a single task and a multi-task scheduling strategy for multiple tasks. The combination strategy… More >

  • Open Access

    ARTICLE

    Parallel Cloth Simulation Using OpenGL Shading Language

    Hongly Va1, Min-Hyung Choi2, Min Hong3,*

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 427-443, 2022, DOI:10.32604/csse.2022.020685

    Abstract The primary goal of cloth simulation is to express object behavior in a realistic manner and achieve real-time performance by following the fundamental concept of physic. In general, the mass–spring system is applied to real-time cloth simulation with three types of springs. However, hard spring cloth simulation using the mass–spring system requires a small integration time-step in order to use a large stiffness coefficient. Furthermore, to obtain stable behavior, constraint enforcement is used instead of maintenance of the force of each spring. Constraint force computation involves a large sparse linear solving operation. Due to the large computation, we implement a… More >

Displaying 1-10 on page 1 of 33. Per Page