Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Unsupervised Color Segmentation with Reconstructed Spatial Weighted Gaussian Mixture Model and Random Color Histogram

    Umer Sadiq Khan1,2,*, Zhen Liu1,2,*, Fang Xu1,2, Muhib Ullah Khan3,4, Lerui Chen5, Touseef Ahmed Khan4,6, Muhammad Kashif Khattak7, Yuquan Zhang8

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3323-3348, 2024, DOI:10.32604/cmc.2024.046094 - 26 March 2024

    Abstract Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model. Although the Gaussian mixture model enhances the flexibility of image segmentation, it does not reflect spatial information and is sensitive to the segmentation parameter. In this study, we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model (GMM) without parameter estimation. The proposed model highlights the residual region with considerable information and constructs color saliency. Second, we incorporate the content-based color saliency as spatial information in the Gaussian mixture model. The segmentation is performed by clustering… More >

  • Open Access

    ARTICLE

    Massive MIMO Codebook Design Using Gaussian Mixture Model Based Clustering

    S. Markkandan1,*, S. Sivasubramanian2, Jaison Mulerikkal3, Nazeer Shaik4, Beulah Jackson5, Lakshmi Naryanan6

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 361-375, 2022, DOI:10.32604/iasc.2022.021779 - 26 October 2021

    Abstract The codebook design is the most essential core technique in constrained feedback massive multi-input multi-output (MIMO) system communications. MIMO vectors have been generally isotropic or evenly distributed in traditional codebook designs. In this paper, Gaussian mixture model (GMM) based clustering codebook design is proposed, which is inspired by the strong classification and analytical abilities of clustering techniques. Huge quantities of channel state information (CSI) are initially saved as entry data of the clustering process. Further, split into N number of clusters based on the shortest distance. The centroids part of clustering has been utilized for More >

  • Open Access

    ARTICLE

    Pedestrian Crossing Detection Based on HOG and SVM

    Yunzuo Zhang*, Kaina Guo, Wei Guo, Jiayu Zhang, Yi Li

    Journal of Cyber Security, Vol.3, No.2, pp. 79-88, 2021, DOI:10.32604/jcs.2021.017082 - 02 August 2021

    Abstract In recent years, pedestrian detection is a hot research topic in the field of computer vision and artificial intelligence, it is widely used in the field of security and pedestrian analysis. However, due to a large amount of calculation in the traditional pedestrian detection technology, the speed of many systems for pedestrian recognition is very limited. But in some restricted areas, such as construction hazardous areas, real-time detection of pedestrians and cross-border behaviors is required. To more conveniently and efficiently detect whether there are pedestrians in the restricted area and cross-border behavior, this paper proposes… More >

  • Open Access

    ARTICLE

    Brainwave Classification for Character-Writing Application Using EMD-Based GMM and KELM Approaches

    Khomdet Phapatanaburi1, Kasidit kokkhunthod2, Longbiao Wang3, Talit Jumphoo2, Monthippa Uthansakul2, Anyaporn Boonmahitthisud4, Peerapong Uthansakul2,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3029-3044, 2021, DOI:10.32604/cmc.2021.014433 - 28 December 2020

    Abstract A brainwave classification, which does not involve any limb movement and stimulus for character-writing applications, benefits impaired people, in terms of practical communication, because it allows users to command a device/computer directly via electroencephalogram signals. In this paper, we propose a new framework based on Empirical Mode Decomposition (EMD) features along with the Gaussian Mixture Model (GMM) and Kernel Extreme Learning Machine (KELM)-based classifiers. For this purpose, firstly, we introduce EMD to decompose EEG signals into Intrinsic Mode Functions (IMFs), which actually are used as the input features of the brainwave classification for the character-writing… More >

  • Open Access

    ARTICLE

    Threshold-Based Adaptive Gaussian Mixture Model Integration (TA-GMMI) Algorithm for Mapping Snow Cover in Mountainous Terrain

    Yonghong Zhang1,2, Guangyi Ma1,2,*, Wei Tian3, Jiangeng Wang4, Shiwei Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1149-1165, 2020, DOI:10.32604/cmes.2020.010932 - 21 August 2020

    Abstract Snow cover is an important parameter in the fields of computer modeling, engineering technology and energy development. With the extensive growth of novel hardware and software compositions creating smart, cyber physical systems’ (CPS) efficient end-to-end workflows. In order to provide accurate snow detection results for the CPS’s terminal, this paper proposed a snow cover detection algorithm based on the unsupervised Gaussian mixture model (GMM) for the FY-4A satellite data. At present, most snow cover detection algorithms mainly utilize the characteristics of the optical spectrum, which is based on the normalized difference snow index (NDSI) with… More >

Displaying 1-10 on page 1 of 5. Per Page