Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    EMU-Net: Automatic Brain Tumor Segmentation and Classification Using Efficient Modified U-Net

    Mohammed Aly1,*, Abdullah Shawan Alotaibi2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 557-582, 2023, DOI:10.32604/cmc.2023.042493 - 31 October 2023

    Abstract Tumor segmentation is a valuable tool for gaining insights into tumors and improving treatment outcomes. Manual segmentation is crucial but time-consuming. Deep learning methods have emerged as key players in automating brain tumor segmentation. In this paper, we propose an efficient modified U-Net architecture, called EMU-Net, which is applied to the BraTS 2020 dataset. Our approach is organized into two distinct phases: classification and segmentation. In this study, our proposed approach encompasses the utilization of the gray-level co-occurrence matrix (GLCM) as the feature extraction algorithm, convolutional neural networks (CNNs) as the classification algorithm, and the… More >

  • Open Access

    ARTICLE

    Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation

    Mona Jamjoom1, Ahmed Elhadad2, Hussein Abulkasim3,*, Safia Abbas4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 367-382, 2023, DOI:10.32604/cmc.2023.037310 - 08 June 2023

    Abstract Several pests feed on leaves, stems, bases, and the entire plant, causing plant illnesses. As a result, it is vital to identify and eliminate the disease before causing any damage to plants. Manually detecting plant disease and treating it is pretty challenging in this period. Image processing is employed to detect plant disease since it requires much effort and an extended processing period. The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases, More >

  • Open Access

    ARTICLE

    Smart Lung Tumor Prediction Using Dual Graph Convolutional Neural Network

    Abdalla Alameen*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 369-383, 2023, DOI:10.32604/iasc.2023.031039 - 29 September 2022

    Abstract A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail. It is possible to create and study 3D models of anatomical structures to improve treatment outcomes, develop more effective medical devices, or arrive at a more accurate diagnosis. This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction. The classification process was conducted with the aid of a convolutional neural network (CNN) with dual graphs. Evaluation of the performance of the fused… More >

  • Open Access

    ARTICLE

    An Efficient Deep Learning-based Content-based Image Retrieval Framework

    M. Sivakumar1,*, N. M. Saravana Kumar2, N. Karthikeyan1

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 683-700, 2022, DOI:10.32604/csse.2022.021459 - 20 April 2022

    Abstract The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology. Image retrieval has become one of the vital tools in image processing applications. Content-Based Image Retrieval (CBIR) has been widely used in varied applications. But, the results produced by the usage of a single image feature are not satisfactory. So, multiple image features are used very often for attaining better results. But, fast and effective searching for relevant images from a database becomes a challenging task. In the previous existing system, the CBIR has used the… More >

  • Open Access

    ARTICLE

    A Lightweight Approach for Skin Lesion Detection Through Optimal Features Fusion

    Khadija Manzoor1, Fiaz Majeed2, Ansar Siddique2, Talha Meraj3, Hafiz Tayyab Rauf4,*, Mohammed A. El-Meligy5, Mohamed Sharaf6, Abd Elatty E. Abd Elgawad6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1617-1630, 2022, DOI:10.32604/cmc.2022.018621 - 07 September 2021

    Abstract Skin diseases effectively influence all parts of life. Early and accurate detection of skin cancer is necessary to avoid significant loss. The manual detection of skin diseases by dermatologists leads to misclassification due to the same intensity and color levels. Therefore, an automated system to identify these skin diseases is required. Few studies on skin disease classification using different techniques have been found. However, previous techniques failed to identify multi-class skin disease images due to their similar appearance. In the proposed study, a computer-aided framework for automatic skin disease detection is presented. In the proposed… More >

  • Open Access

    ARTICLE

    A GLCM-Feature-Based Approach for Reversible Image Transformation

    Xianyi Chen1,2,*, Haidong Zhong1,2, Zhifeng Bao3

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 239-255, 2019, DOI:10.32604/cmc.2019.03572

    Abstract Recently, a reversible image transformation (RIT) technology that transforms a secret image to a freely-selected target image is proposed. It not only can generate a stego-image that looks similar to the target image, but also can recover the secret image without any loss. It also has been proved to be very useful in image content protection and reversible data hiding in encrypted images. However, the standard deviation (SD) is selected as the only feature during the matching of the secret and target image blocks in RIT methods, the matching result is not so good and… More >

Displaying 1-10 on page 1 of 6. Per Page