Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026

    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

  • Open Access

    ARTICLE

    AutoSHARC: Feedback Driven Explainable Intrusion Detection with SHAP-Guided Post-Hoc Retraining for QoS Sensitive IoT Networks

    Muhammad Saad Farooqui1, Aizaz Ahmad Khattak2, Bakri Hossain Awaji3, Nazik Alturki4, Noha Alnazzawi5, Muhammad Hanif6,*, Muhammad Shahbaz Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4395-4439, 2025, DOI:10.32604/cmes.2025.072023 - 23 December 2025

    Abstract Quality of Service (QoS) assurance in programmable IoT and 5G networks is increasingly threatened by cyberattacks such as Distributed Denial of Service (DDoS), spoofing, and botnet intrusions. This paper presents AutoSHARC, a feedback-driven, explainable intrusion detection framework that integrates Boruta and LightGBM–SHAP feature selection with a lightweight CNN–Attention–GRU classifier. AutoSHARC employs a two-stage feature selection pipeline to identify the most informative features from high-dimensional IoT traffic and reduces 46 features to 30 highly informative ones, followed by post-hoc SHAP-guided retraining to refine feature importance, forming a feedback loop where only the most impactful attributes are More >

  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

  • Open Access

    ARTICLE

    GWO-LightGBM: A Hybrid Grey Wolf Optimized Light Gradient Boosting Model for Cyber-Physical System Security

    Adeel Munawar1, Muhammad Nadeem Ali2, Awais Qasim3, Byung-Seo Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1189-1211, 2025, DOI:10.32604/cmes.2025.071876 - 30 October 2025

    Abstract Cyber-physical systems (CPS) represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing, healthcare, and autonomous infrastructure. However, their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats, potentially leading to operational failures and data breaches. Furthermore, CPS faces significant threats related to unauthorized access, improper management, and tampering of the content it generates. In this paper, we propose an intrusion detection system (IDS) optimized for CPS environments using a hybrid approach by combining a nature-inspired feature selection scheme, such as Grey Wolf Optimization (GWO),… More >

  • Open Access

    ARTICLE

    Risk Indicator Identification for Coronary Heart Disease via Multi-Angle Integrated Measurements and Sequential Backward Selection

    Hui Qi1, Jingyi Lian2, Congjun Rao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 995-1028, 2025, DOI:10.32604/cmes.2025.069722 - 30 October 2025

    Abstract For the past few years, the prevalence of cardiovascular disease has been showing a year-on-year increase, with a death rate of 2/5. Coronary heart disease (CHD) rates have increased 41% since 1990, which is the number one disease endangering human health in the world today. The risk indicators of CHD are complicated, so selecting effective methods to screen the risk characteristics can make the risk prediction more efficient. In this paper, we present a comprehensive analysis of CHD risk indicators from both data and algorithmic levels, propose a method for CHD risk indicator identification based… More >

  • Open Access

    ARTICLE

    Fortifying Industry 4.0 Solar Power Systems: A Blockchain-Driven Cybersecurity Framework with Immutable LightGBM

    Asrar Mahboob1, Muhammad Rashad1, Ghulam Abbas1, Zohaib Mushtaq2, Tehseen Mazhar3,*, Ateeq Ur Rehman4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3805-3823, 2025, DOI:10.32604/cmc.2025.067615 - 23 September 2025

    Abstract This paper presents a novel blockchain-embedded cybersecurity framework for industrial solar power systems, integrating immutable machine learning (ML) with distributed ledger technology. Our contribution focused on three factors, Quantum-resistant feature engineering using the UNSW-NB15 dataset adapted for solar infrastructure anomalies. An enhanced Light Gradient Boosting Machine (LightGBM) classifier with blockchain-validated decision thresholds, and A cryptographic proof-of-threat (PoT) consensus mechanism for cyber attack verification. The proposed Immutable LightGBM model with majority voting and cryptographic feature encoding achieves 96.9% detection accuracy with 0.97 weighted average of precision, recall and F1-score, outperforming conventional intrusion detection systems (IDSs) by… More >

  • Open Access

    ARTICLE

    Explainable Diabetic Retinopathy Detection Using a Distributed CNN and LightGBM Framework

    Pooja Bidwai1,2, Shilpa Gite1,3, Biswajeet Pradhan4,*, Abdullah Almari5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2645-2676, 2025, DOI:10.32604/cmc.2025.061018 - 03 July 2025

    Abstract Diabetic Retinopathy (DR) is a critical disorder that affects the retina due to the constant rise in diabetics and remains the major cause of blindness across the world. Early detection and timely treatment are essential to mitigate the effects of DR, such as retinal damage and vision impairment. Several conventional approaches have been proposed to detect DR early and accurately, but they are limited by data imbalance, interpretability, overfitting, convergence time, and other issues. To address these drawbacks and improve DR detection accurately, a distributed Explainable Convolutional Neural network-enabled Light Gradient Boosting Machine (DE-ExLNN) is… More >

  • Open Access

    ARTICLE

    A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP)

    Shuqin Zhang1, Zihao Wang1,*, Xinyu Su2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5781-5809, 2025, DOI:10.32604/cmc.2025.062080 - 19 May 2025

    Abstract The methods of network attacks have become increasingly sophisticated, rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively. In recent years, artificial intelligence has achieved significant progress in the field of network security. However, many challenges and issues remain, particularly regarding the interpretability of deep learning and ensemble learning algorithms. To address the challenge of enhancing the interpretability of network attack prediction models, this paper proposes a method that combines Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP). LGBM is employed to model anomalous fluctuations in various network indicators,… More >

  • Open Access

    ARTICLE

    The alternatively spliced diacylglycerol kinase gamma-Δ exon13 transcript generated under hypoxia promotes glioblastoma progression

    MING YANG1,#, LIANGZHAO CHU1,#, SHUKAI LIN2, HAN PENG1, NIYA LONG1, KAYA XU1, HUA YANG1, FENG HAN1,*, JIAN LIU1,*

    Oncology Research, Vol.33, No.5, pp. 1189-1198, 2025, DOI:10.32604/or.2024.055102 - 18 April 2025

    Abstract Background: Glioblastoma (GBM) is one of the most malignant types of central nervous system tumors. Oxygen deprivation in the tumor microenvironment is thought to be an important factor in promoting GBM progression. However, the mechanisms of hypoxia-promoted tumor progression remain elusive. Methods: Alternative splicing of diacylglycerol kinase gamma (DGKG)-Δ exon13 was amplified and verified by PCR-Sanger sequencing. The functions of DGKG and DGKG-Δ exon13 were analyzed by Cell counting kit-8 (CCK-8), Transwell, Matrigel-transwell experiments, and in vivo orthotropic GBM animal models. Transcriptome analyses were done to find out the regulated genes. Results: In this study, we found… More > Graphic Abstract

    The alternatively spliced diacylglycerol kinase gamma-Δ exon13 transcript generated under hypoxia promotes glioblastoma progression

  • Open Access

    ARTICLE

    Ketogenic diet with oxyresveratrol and zinc inhibits glioblastoma and restores memory function and motor coordination

    TANVI VIJAY GUJARAN1,#, VIGNESH BALAJI EASWARAN1,#, RUNALI SANKHE1, PUGAZHANDHI BAKTHAVATCHALAM2,3, HERMAN SUNIL DSOUZA4, K. SREEDHARA RANGANATH PAI1,*

    Oncology Research, Vol.33, No.2, pp. 381-395, 2025, DOI:10.32604/or.2024.049538 - 16 January 2025

    Abstract Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs). Glucose plays an important role in the, which energy metabolism of normal and cancer cells, but cancer cells exhibit an increased demand for glucose is required for their differentiation and proliferation. The main aim of this study is to explore the anti-cancer efficacy of the ketogenic diet against GBM. Also,… More >

Displaying 1-10 on page 1 of 30. Per Page