Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,256)
  • Open Access

    ARTICLE

    Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect

    Nurlan Zhangabay1,*, Ulzhan Ibraimova2, Marco Bonopera3,*, Ulanbator Suleimenov1, Konstantin Avramov4, Maryna Chernobryvko4, Aigerim Yessengali1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 1-23, 2025, DOI:10.32604/sdhm.2024.053391 - 15 November 2024

    Abstract Using the software ANSYS-19.2/Explicit Dynamics, this study performed finite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack, strengthened by steel wire wrapping. The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied. The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force, which was 6.4% more effective than that at its maximum value. The analysis… More >

  • Open Access

    ARTICLE

    The Hydraulic Fracturing Optimization for Stacked Tight Gas Reservoirs Using Multilayers and Multiwells Fracturing Strategies

    Yuanyuan Yang1, Xian Shi1,2,*, Cheng Ji3, Yujie Yan3, Na An3, Teng Zhang4

    Energy Engineering, Vol.121, No.12, pp. 3667-3688, 2024, DOI:10.32604/ee.2024.056266 - 22 November 2024

    Abstract Based on a geology-engineering sweet spot evaluation, the high-quality reservoir zones and horizontal well landing points were determined. Subsequently, fracture propagation and production were simulated with a multilayer fracturing scenario. The optimal hydraulic fracturing strategy for the multilayer fracturing network was determined by introducing a vertical asymmetry factor. This strategy aimed to minimize stress shadowing effects in the vertical direction while maximizing the stimulated reservoir volume (SRV). The study found that the small vertical layer spacing of high-quality reservoirs and the presence of stress-masking layers (with a stress difference of approximately 3~8 MPa) indicate that… More > Graphic Abstract

    The Hydraulic Fracturing Optimization for Stacked Tight Gas Reservoirs Using Multilayers and Multiwells Fracturing Strategies

  • Open Access

    ARTICLE

    Malfunction Diagnosis of the GTCC System under All Operating Conditions Based on Exergy Analysis

    Xinwei Wang1,2,*, Ming Li1, Hankun Bing1, Dongxing Zhang1, Yuanshu Zhang1

    Energy Engineering, Vol.121, No.12, pp. 3875-3898, 2024, DOI:10.32604/ee.2024.056237 - 22 November 2024

    Abstract After long-term operation, the performance of components in the GTCC system deteriorates and requires timely maintenance. Due to the inability to directly measure the degree of component malfunction, it is necessary to use advanced exergy analysis diagnosis methods to characterize the components’ health condition (degree of malfunction) through operation data of the GTCC system. The dissipative temperature is used to describe the degree of malfunction of different components in the GTCC system, and an advanced exergy analysis diagnostic method is used to establish a database of overall operating condition component malfunctions in the GTCC system.… More >

  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    ARTICLE

    Production of Light Fraction-Based Pyrolytic Fuel from Spirulina platensis Microalgae Using Various Low-Cost Natural Catalysts and Insertion

    Indra Mamad Gandidi1,2,*, Sukarni Sukarni3,4, Avita Ayu Permanasari3, Purnami Purnami5, Tuan Amran Tuan Abdullah6, Anwar Johari6, Nugroho Agung Pambudi7,*

    Energy Engineering, Vol.121, No.12, pp. 3635-3648, 2024, DOI:10.32604/ee.2024.054943 - 22 November 2024

    Abstract The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products. However, there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalysts (LCC) and their placement within the reactor. Therefore, this study aims to examine the effects of various LCC on the in-situ pyrolysis of spirulina platensis microalgae (SPM) and investigate the impact of different types of catalysts. We employed LCC such as zeolite, dolomite, kaolin, and activated carbon, with both layered and uniformly mixed LCC-SPM placements. Each experiment was conducted at a constant temperature of 500°C… More > Graphic Abstract

    Production of Light Fraction-Based Pyrolytic Fuel from <i>Spirulina platensis</i> Microalgae Using Various Low-Cost Natural Catalysts and Insertion

  • Open Access

    ARTICLE

    Bibliometric Exploration of Conversion of Sugars to Furan Derivatives 2,5-Dimethylfuran by Catalytic Process

    Nuttida Chanhom1, Tossapon Katongtung2, Nakorn Tippayawong2,*

    Energy Engineering, Vol.121, No.12, pp. 3649-3665, 2024, DOI:10.32604/ee.2024.054862 - 22 November 2024

    Abstract This study investigated the conversion of sugars into furan derivatives, specifically 2,5-dimethylfuran, through catalytic processes using bibliographic analysis. This method evaluates scientific outcomes and impact within a specific field by analyzing data such as publication trends, references, collaborative models, leading authors, and institutions. The study utilized data from the reliable Scopus database and conducted analysis using the visualization of similarity (VOS) viewer program to gain in-depth insights into the current state of research on this topic. The findings revealed that “5 hydroxymethyl furfural” was the most used keyword, followed by “biomass” and “catalysis.” The research More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

    Tao Yan1, Javed Rashid2,3, Muhammad Shoaib Saleem3,4, Sajjad Ahmad4, Muhammad Faheem5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2685-2708, 2024, DOI:10.32604/cmc.2024.058186 - 18 November 2024

    Abstract Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and… More >

  • Open Access

    ARTICLE

    An Investigation of Frequency-Domain Pruning Algorithms for Accelerating Human Activity Recognition Tasks Based on Sensor Data

    Jian Su1, Haijian Shao1,2,*, Xing Deng1, Yingtao Jiang2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2219-2242, 2024, DOI:10.32604/cmc.2024.057604 - 18 November 2024

    Abstract The rapidly advancing Convolutional Neural Networks (CNNs) have brought about a paradigm shift in various computer vision tasks, while also garnering increasing interest and application in sensor-based Human Activity Recognition (HAR) efforts. However, the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems. This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain, which reduces the model’s depth and accelerates activity inference. Unlike traditional pruning methods that focus on the spatial domain and the importance of filters, this… More >

  • Open Access

    ARTICLE

    AI-Driven Prioritization and Filtering of Windows Artifacts for Enhanced Digital Forensics

    Juhwan Kim, Baehoon Son, Jihyeon Yu, Joobeom Yun*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3371-3393, 2024, DOI:10.32604/cmc.2024.057234 - 18 November 2024

    Abstract Digital forensics aims to uncover evidence of cybercrimes within compromised systems. These cybercrimes are often perpetrated through the deployment of malware, which inevitably leaves discernible traces within the compromised systems. Forensic analysts are tasked with extracting and subsequently analyzing data, termed as artifacts, from these systems to gather evidence. Therefore, forensic analysts must sift through extensive datasets to isolate pertinent evidence. However, manually identifying suspicious traces among numerous artifacts is time-consuming and labor-intensive. Previous studies addressed such inefficiencies by integrating artificial intelligence (AI) technologies into digital forensics. Despite the efforts in previous studies, artifacts were… More >

Displaying 1-10 on page 1 of 3256. Per Page