Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Game Theory-Based Dynamic Weighted Ensemble for Retinal Disease Classification

    Kanupriya Mittal*, V. Mary Anita Rajam

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1907-1921, 2023, DOI:10.32604/iasc.2023.029037 - 19 July 2022

    Abstract An automated retinal disease detection system has long been in existence and it provides a safe, no-contact and cost-effective solution for detecting this disease. This paper presents a game theory-based dynamic weighted ensemble of a feature extraction-based machine learning model and a deep transfer learning model for automatic retinal disease detection. The feature extraction-based machine learning model uses Gaussian kernel-based fuzzy rough sets for reduction of features, and XGBoost classifier for the classification. The transfer learning model uses VGG16 or ResNet50 or Inception-ResNet-v2. A novel ensemble classifier based on the game theory approach is proposed More >

  • Open Access

    ARTICLE

    A Novel Fuzzy Rough Sets Theory Based CF Recommendation System

    C. Raja Kumar1, VE. Jayanthi2

    Computer Systems Science and Engineering, Vol.34, No.3, pp. 123-129, 2019, DOI:10.32604/csse.2019.34.123

    Abstract Collaborative Filtering (CF) is one of the popular methodology in recommender systems. It suffers from the data sparsity problem, recommendation inaccuracy and big-error in predictions. In this paper, the efficient advisory tool is implemented for the younger generation to choose their right career based on their knowledge. It acquires the notions of indiscernible relation from Fuzzy Rough Sets Theory (FRST) and propose a novel algorithm named as Fuzzy Rough Set Theory Based Collaborative Filtering Algorithm (FRSTBCF). To evaluate the model, data is prepared using the cross validation method. Based on that, ratings are evaluated by… More >

  • Open Access

    ARTICLE

    An Intelligent Incremental Filtering Feature Selection and Clustering Algorithm for Effective Classification

    U. Kanimozhi, D. Manjula

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 701-709, 2018, DOI:10.1080/10798587.2017.1307626

    Abstract We are witnessing the era of big data computing where computing the resources is becoming the main bottleneck to deal with those large datasets. In the case of high-dimensional data where each view of data is of high dimensionality, feature selection is necessary for further improving the clustering and classification results. In this paper, we propose a new feature selection method, Incremental Filtering Feature Selection (IF2S) algorithm, and a new clustering algorithm, Temporal Interval based Fuzzy Minimal Clustering (TIFMC) algorithm that employs the Fuzzy Rough Set for selecting optimal subset of features and for effective More >

Displaying 1-10 on page 1 of 3. Per Page