Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    A Novel Filtering-Based Detection Method for Small Targets in Infrared Images

    Sanxia Shi, Yinglei Song*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2911-2934, 2024, DOI:10.32604/cmc.2024.055363 - 18 November 2024

    Abstract Infrared small target detection technology plays a pivotal role in critical military applications, including early warning systems and precision guidance for missiles and other defense mechanisms. Nevertheless, existing traditional methods face several significant challenges, including low background suppression ability, low detection rates, and high false alarm rates when identifying infrared small targets in complex environments. This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach. The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.… More >

  • Open Access

    ARTICLE

    A Comprehensive Image Processing Framework for Early Diagnosis of Diabetic Retinopathy

    Kusum Yadav1, Yasser Alharbi1, Eissa Jaber Alreshidi1, Abdulrahman Alreshidi1, Anuj Kumar Jain2, Anurag Jain3, Kamal Kumar4, Sachin Sharma5, Brij B. Gupta6,7,8,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2665-2683, 2024, DOI:10.32604/cmc.2024.053565 - 18 November 2024

    Abstract In today’s world, image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images. Automated analysis of medical images is essential for doctors, as manual investigation often leads to inter-observer variability. This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework. The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization (MIWPSO) and Fuzzy C-Means clustering (FCM) algorithms. Traditional FCM does not incorporate spatial neighborhood features, making More >

  • Open Access

    ARTICLE

    Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination

    Xianghui Hu1, Yiming Tang2,3, Witold Pedrycz3,4, Jiuchuan Jiang5,*, Yichuan Jiang1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4917-4945, 2024, DOI:10.32604/cmc.2024.054775 - 12 September 2024

    Abstract Traditional Fuzzy C-Means (FCM) and Possibilistic C-Means (PCM) clustering algorithms are data-driven, and their objective function minimization process is based on the available numeric data. Recently, knowledge hints have been introduced to form knowledge-driven clustering algorithms, which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints. However, these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself; they require the assistance of evaluation indices. Moreover, knowledge hints are usually used as part of the data structure (directly replacing some clustering centers),… More >

  • Open Access

    ARTICLE

    Analysis of Electricity Consumption Pattern Clustering and Electricity Consumption Behavior

    Liang Zhu1, Junyang Liu1, Chen Hu1, Yanli Zhi2, Yupeng Liu3,*

    Energy Engineering, Vol.121, No.9, pp. 2639-2653, 2024, DOI:10.32604/ee.2024.041441 - 19 August 2024

    Abstract Studying user electricity consumption behavior is crucial for understanding their power usage patterns. However, the traditional clustering methods fail to identify emerging types of electricity consumption behavior. To address this issue, this paper introduces a statistical analysis of clusters and evaluates the set of indicators for power usage patterns. The fuzzy C-means clustering algorithm is then used to analyze 6 months of electricity consumption data in 2017 from energy storage equipment, agricultural drainage irrigation, port shore power, and electric vehicles. Finally, the proposed method is validated through experiments, where the Davies-Bouldin index and profile coefficient More >

  • Open Access

    ARTICLE

    Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning

    Jili Chen1,2, Hailan Wang2, Xiaolan Xie1,2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 645-663, 2024, DOI:10.32604/csse.2023.037957 - 20 May 2024

    Abstract Fuzzy C-Means (FCM) is an effective and widely used clustering algorithm, but there are still some problems. considering the number of clusters must be determined manually, the local optimal solutions is easily influenced by the random selection of initial cluster centers, and the performance of Euclid distance in complex high-dimensional data is poor. To solve the above problems, the improved FCM clustering algorithm based on density Canopy and Manifold learning (DM-FCM) is proposed. First, a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster… More >

  • Open Access

    ARTICLE

    Enhanced Object Detection and Classification via Multi-Method Fusion

    Muhammad Waqas Ahmed1, Nouf Abdullah Almujally2, Abdulwahab Alazeb3, Asaad Algarni4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3315-3331, 2024, DOI:10.32604/cmc.2024.046501 - 15 May 2024

    Abstract Advances in machine vision systems have revolutionized applications such as autonomous driving, robotic navigation, and augmented reality. Despite substantial progress, challenges persist, including dynamic backgrounds, occlusion, and limited labeled data. To address these challenges, we introduce a comprehensive methodology to enhance image classification and object detection accuracy. The proposed approach involves the integration of multiple methods in a complementary way. The process commences with the application of Gaussian filters to mitigate the impact of noise interference. These images are then processed for segmentation using Fuzzy C-Means segmentation in parallel with saliency mapping techniques to find… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    Thanh-Lam Nguyen1, Hao Kao1, Thanh-Tuan Nguyen2, Mong-Fong Horng1,*, Chin-Shiuh Shieh1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387 - 27 February 2024

    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have… More >

  • Open Access

    ARTICLE

    Enhancing Multicriteria-Based Recommendations by Alleviating Scalability and Sparsity Issues Using Collaborative Denoising Autoencoder

    S. Abinaya*, K. Uttej Kumar

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2269-2286, 2024, DOI:10.32604/cmc.2024.047167 - 27 February 2024

    Abstract A Recommender System (RS) is a crucial part of several firms, particularly those involved in e-commerce. In conventional RS, a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences. Nowadays, businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’ preferences. On the other hand, the collaborative filtering (CF) algorithm utilizing AutoEncoder (AE) is seen to be effective in identifying user-interested items. However, the cost of these computations increases nonlinearly as the number of items and users… More >

  • Open Access

    ARTICLE

    Improved Supervised and Unsupervised Metaheuristic-Based Approaches to Detect Intrusion in Various Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 265-298, 2023, DOI:10.32604/cmes.2023.027581 - 23 April 2023

    Abstract Due to the increasing number of cyber-attacks, the necessity to develop efficient intrusion detection systems (IDS) is more imperative than ever. In IDS research, the most effectively used methodology is based on supervised Neural Networks (NN) and unsupervised clustering, but there are few works dedicated to their hybridization with metaheuristic algorithms. As intrusion detection data usually contains several features, it is essential to select the best ones appropriately. Linear Discriminant Analysis (LDA) and t-statistic are considered as efficient conventional techniques to select the best features, but they have been little exploited in IDS design. Thus,… More >

  • Open Access

    ARTICLE

    A Novel Soft Clustering Method for Detection of Exudates

    Kittipol Wisaeng*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 1039-1058, 2023, DOI:10.32604/csse.2023.034901 - 20 January 2023

    Abstract One of the earliest indications of diabetes consequence is Diabetic Retinopathy (DR), the main contributor to blindness worldwide. Recent studies have proposed that Exudates (EXs) are the hallmark of DR severity. The present study aims to accurately and automatically detect EXs that are difficult to detect in retinal images in the early stages. An improved Fusion of Histogram–Based Fuzzy C–Means Clustering (FHBFCM) by a New Weight Assignment Scheme (NWAS) and a set of four selected features from stages of pre-processing to evolve the detection method is proposed. The features of DR train the optimal parameter… More >

Displaying 1-10 on page 1 of 24. Per Page