Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    Inverse Design of Multifunctional Shape-Morphing Structures Based on Functionally Graded Composites

    Hirak Kansara1, Mingchao Liu2,*, Yinfeng He3, Wei Tan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011328

    Abstract Shape-morphing structures exhibit the remarkable ability to transition between different configurations, offering vast potential across numerous applications. A common example involves the transformation from a flat two-dimensional (2D) state to a desired three-dimensional (3D) form. One prevalent technique for fabricating such structures entails strategically cutting thin sheet materials (known as kirigami), which, upon the application of external mechanical forces, morph into the intended 3D shape. A method leveraging the non-linear beam equation has been proposed for inverse design, determining the optimal 2D cutting patterns necessary to achieve a symmetrical 3D shape. Central to this strategy… More >

  • Open Access

    ARTICLE

    Thermomechanical Analysis of Functionally Graded Composites under Laser Heating by the MLPG Method

    H. K. Ching1,2, J. K. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 199-218, 2006, DOI:10.3970/cmes.2006.013.199

    Abstract The Meshless Local Petrov-Galerkin (MLPG) method is a novel numerical approach similar to finite element methods, but it allows the construction of the shape function and domain discretization without defining elements. In this study, the MLPG analysis for transient thermomechanical response of a functionally graded composite heated by Gaussian laser beams is presented. The composite is modeled as a 2-D strip which consists of metal and ceramic phases with the volume fraction varying over the thickness. Two sets of the micromechanical models are employed for evaluating the effective material properties, respectively. Numerical results are presented More >

Displaying 1-10 on page 1 of 2. Per Page