Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Recovery of Solid Oxide Fuel Cell Waste Heat by Thermoelectric Generators and Alkali Metal Thermoelectric Converters

    Wenxia Zhu*, Baishu Chen, Lexin Wang, Chunxiang Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1559-1573, 2024, DOI:10.32604/fhmt.2024.047351 - 30 October 2024

    Abstract A Solid Oxide Fuel Cell (SOFC) is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism. The electrochemical reaction of a solid oxide fuel cell (SOFC) generates heat, and this heat can be recovered and put to use in a waste heat recovery system. In addition to preheating the fuel and oxidant, producing steam for industrial use, and heating and cooling enclosed rooms, this waste heat can be used for many more productive uses. The large waste heat produced by SOFCs is a worry that must… More >

  • Open Access

    ARTICLE

    The Effects of the Geometry of a Current Collector with an Equal Open Ratio on Output Power of a Direct Methanol Fuel Cell

    Yingli Zhu1,*, Jiachi Xie1, Mingwei Zhu1, Jun Zhang2, Miaomiao Li3

    Energy Engineering, Vol.121, No.5, pp. 1161-1172, 2024, DOI:10.32604/ee.2024.041205 - 30 April 2024

    Abstract The open ratio of a current collector has a great impact on direct methanol fuel cell (DMFC) performance. Although a number of studies have investigated the influence of the open ratio of DMFC current collectors, far too little attention has been given to how geometry (including the shape and feature size of the flow field) affects a current collector with an equal open ratio. In this paper, perforated and parallel current collectors with an equal open ratio of 50% and different feature sizes are designed, and the corresponding experimental results are shown to explain the… More >

  • Open Access

    ARTICLE

    Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics

    Junhui Li1, Haotian Zhang1, Cuiping Li1,*, Xingxu Zhu1, Ruitong Liu2, Fangwei Duan2, Yongming Peng3

    Energy Engineering, Vol.121, No.2, pp. 291-313, 2024, DOI:10.32604/ee.2023.027593 - 25 January 2024

    Abstract In the existing power system with a large-scale hydrogen storage system, there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system. In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation, and speed up the process of electric-hydrogen-electricity conversion. This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit, and also establishes a charging and discharging efficiency model that considers the temperature and internal gas… More >

  • Open Access

    ARTICLE

    Research on ECMS Based on Segmented Path Braking Energy Recovery in a Fuel Cell Vehicle

    Wen Sun1, Meijing Li2, Guoxiang Li1, Ke Sun1,*, Shuzhan Bai1,*

    Energy Engineering, Vol.121, No.1, pp. 95-110, 2024, DOI:10.32604/ee.2023.042096 - 27 December 2023

    Abstract Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles. Since fuel cells cannot recover energy and have a slow dynamic response, they need to be used with different power sources. Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research. This paper proposes an adaptive equivalent fuel minimum consumption strategy (AECMS) to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors (EF) in traditional ECMS. In this method, the kinematics More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Geometrical Parameters on the Performance of a Proton Exchange Membrane Fuel Cell

    Guodong Zhang1, Huifang Tao1, Da Li1, Kewei Chen2, Guoxiang Li1,*, Shuzhan Bai1, Ke Sun1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 219-237, 2024, DOI:10.32604/fdmp.2023.025566 - 08 November 2023

    Abstract A suitable channel structure can lead to efficient gas distribution and significantly improve the power density of fuel cells. In this study, the influence of two channel design parameters is investigated, namely, the ratio of the channel width to the bipolar plate ridge width (i.e., the channel ridge ratio) and the channel depth. The impact of these parameters is evaluated with respect to the flow pattern, the gas composition distribution, the temperature field and the fuel cell output capability. The results show that a decrease in the channel ridge ratio and an increase in the More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage More >

  • Open Access

    ARTICLE

    CFD Analysis of Spiral Flow Fields in Proton Exchange Membrane Fuel Cells

    Jian Yao, Fayi Yan*, Xuejian Pei

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1425-1445, 2023, DOI:10.32604/fdmp.2023.025282 - 30 January 2023

    Abstract Proton exchange membrane fuel cells (PEMFCs) are largely used in various applications because of their pollution-free products and high energy conversion efficiency. In order to improve the related design, in the present work a new spiral flow field with a bypass is proposed. The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass. The bypasses are arranged incrementally. The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used. The More > Graphic Abstract

    CFD Analysis of Spiral Flow Fields in Proton Exchange Membrane Fuel Cells

  • Open Access

    ARTICLE

    The Impact of Hydrogen Energy Storage on the Electricity Harvesting

    Ghassan Mousa1, Ayman A. Aly2, Imran Khan3, Dag Øivind Madsen4,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1963-1978, 2023, DOI:10.32604/iasc.2023.033627 - 05 January 2023

    Abstract The economics, infrastructure, transportation, and level of living of a country are all influenced by energy. The gap between energy usage and availability is a global issue. Currently, all countries rely on fossil fuels for energy generation, and these fossil fuels are not sustainable. The hydrogen proton exchange membrane fuel cell (PEMFC) power system is both clean and efficient. The fuel delivery system and the PEMFC make up the majority of the PEMFC power system. The lack of an efficient, safe, and cost-effective hydrogen storage system is still a major barrier to its widespread use.… More >

  • Open Access

    ARTICLE

    Gaussian PI Controller Network Classifier for Grid-Connected Renewable Energy System

    Ravi Samikannu1,*, K. Vinoth2, Narasimha Rao Dasari3, Senthil Kumar Subburaj4

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 983-995, 2023, DOI:10.32604/iasc.2023.026069 - 06 June 2022

    Abstract Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit. Renewable energy sources are playing a significant role in the modern energy system with rapid development. In renewable sources like fuel combustion and solar energy, the generated voltages change due to their environmental changes. To develop energy resources, electric power generation involved huge awareness. The power and output voltages are plays important role in our work but it not considered in the existing system. For considering the power and voltage, Gaussian… More >

  • Open Access

    ARTICLE

    Effect of Sulfuric Acid on the Physiochemical Properties of Chitosan-PVA Blend for Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb, PRAGYAN SENAPATIc, SWETAK ABHISEK MOHAPATRAb

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 89-109, 2022, DOI:10.32381/JPM.2022.39.1-2.6

    Abstract In this work, we have successfully cross-linked the different weight ratio of Chitosan-PVA blend with sulfuric acid. The effect of cross-linker on the properties of blends are studied by using different experimental technique. The cross-linked membrane provides higher ion exchange capacity due to the procurement of extra ionic hooping sites in the membrane. The compatibility of the blends are confirmed from the FTIR and DSC analysis. The crosslinking reaction fastening the phase transition behavior of the blends which reduces the glass transition temperature. The highly compatiblized cross-linked blend provides higher tensile strength and lower modulus… More >

Displaying 1-10 on page 1 of 37. Per Page