Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

    Junjie Zhou, Hongkui Xu*, Zifeng Zhang, Jiangkun Lu, Wentao Guo, Zhenye Li

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2277-2297, 2023, DOI:10.32604/csse.2023.036419

    Abstract Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or a simple network combination cannot… More >

  • Open Access

    ARTICLE

    Leveraging Readability and Sentiment in Spam Review Filtering Using Transformer Models

    Sujithra Kanmani*, Surendiran Balasubramanian

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1439-1454, 2023, DOI:10.32604/csse.2023.029953

    Abstract Online reviews significantly influence decision-making in many aspects of society. The integrity of internet evaluations is crucial for both consumers and vendors. This concern necessitates the development of effective fake review detection techniques. The goal of this study is to identify fraudulent text reviews. A comparison is made on shill reviews vs. genuine reviews over sentiment and readability features using semi-supervised language processing methods with a labeled and balanced Deceptive Opinion dataset. We analyze textual features accessible in internet reviews by merging sentiment mining approaches with readability. Overall, the research improves fake review screening by using various transformer models such… More >

  • Open Access

    ARTICLE

    Detecting and Analysing Fake Opinions Using Artificial Intelligence Algorithms

    Mosleh Hmoud Al-Adhaileh1, Fawaz Waselallah Alsaade2,*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 643-655, 2022, DOI:10.32604/iasc.2022.021225

    Abstract In e-commerce and on social media, identifying fake opinions has become a tremendous challenge. Such opinions are widely generated on the internet by fake viewers, also called fraudsters. They write deceptive reviews that purport to reflect actual user experience either to promote some products or to defame others. They also target the reputations of e-businesses. Their aim is to mislead customers to make a wrong purchase decision by selecting undesired products. Such reviewers are often paid by rival e-business companies to compose positive reviews of their products and/or negative reviews of other companies’ products. The main objective of this paper… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link