Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    PROCEEDINGS

    Simulation of Temporary Plugging Agent Flow State in Fractures of Hot Dry Rock Considering Environmental Changes

    Zongze Li1, Zirui Yang2, Yue Wu3, Chunming He4, Bo Yu2, Daobing Wang2,*, Yueshe Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-4, 2024, DOI:10.32604/icces.2024.012090

    Abstract Geothermal energy is an important renewable energy source, where hot dry rock (HDR) constitutes the primary component, accounting for approximately 90% of the resource. Therefore, the establishment of an efficient HDR geothermal utilization system is a core issue in geothermal resource development. Hydraulic fracturing (HF) technology serves as a crucial means aimed at enhancing the complexity of underground fracture networks and increasing heat exchange efficiency, thus improving the performance of HDR geothermal utilization systems. However, the fracture structure formed by conventional HF techniques is relatively simple, resulting in limited heat exchange areas. Hence, the temporary… More >

  • Open Access

    PROCEEDINGS

    Treatments of Fractures Intersection in the Enriched-Embedded Discrete Fracture Model (nEDFM) for Porous Flow

    Kaituo Jiao1, Dongxu Han2,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-3, 2024, DOI:10.32604/icces.2024.011520

    Abstract Motivated by the fractures being very thin compared to the size of rock matrix, utilizing the non-conforming grid is an efficient approach to simulate fluid flow in fractured porous media. The embedded discrete fracture model (EDFM) is the typical one that using the conforming grid and modelled based on the finite volume method (FVM) framework. The EDFM maintains advantages of mass conservation and low computational complexity, but it cannot characterize blocking fractures and has a low accuracy on the mass exchange between fractures and matrix [1]. In our previous work [2], we developed the enriched-EDFM… More >

  • Open Access

    PROCEEDINGS

    An Energy-Based Local-Nonlocal Coupling Scheme for Heterogeneous Material Brittle Fractures: Analysis and Simulations

    Shaoqi Zheng1, Zihao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012200

    Abstract This study proposes a novel method for predicting the microcrack propagation in composites based on coupling the local and non-local micromechanics. The special feature of this method is that it can take full advantages of both the continuum micromechanics as a local model and peridynamic micromechanics as a non-local model to achieve composite fracture simulation with a higher level of accuracy and efficiency. Based on the energy equivalence, we first establish the equivalent continuum micromechanics model with equivalent stiffness operators through peridynamic micromechanics model. These two models are then coupled into a closed equation system, More >

  • Open Access

    ARTICLE

    Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures

    Fayez Alfayez*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1539-1560, 2024, DOI:10.32604/cmc.2024.046443 - 25 April 2024

    Abstract This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spine fractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picture segmentation, feature reduction, and image classification. Two important elements are investigated to reduce the classification time: Using feature reduction software and leveraging the capabilities of sophisticated digital processing hardware. The researchers use different algorithms for picture enhancement, including the Wiener and Kalman filters, and they look into two background correction techniques. The article presents a technique for extracting textural features and evaluates three… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Diverter Materials in Hydraulic Fractures During Refracturing

    Daobing Wang1,*, Cheng Zheng1, Bo Yu1, Dongliang Sun1, Dingwei Weng2, Chunming He2, Meng Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09205

    Abstract Refracturing has become an important technique for increasing hydrocarbon production due to the low oil prices. During refracturing, the granular diverter materials are injected to temporarily seal old fractures in subsurface. These diverter materials are usually carried by the fracturing fluid, which is a typical solid-fluid flow in the fracture [1-3]. Therefore, we need to thoroughly understand the flow mechanism of diverter materials in hydraulic fractures, which is the key to the success of refracturing treatment.
    Using the Euler-Lagrange method, this paper presents a multiphase model to numerically simulate the flow process of diverter materials in… More >

  • Open Access

    PROCEEDINGS

    A Peridynamics-Based Finite Element Method (PeriFEM) and Its Implementation in Commercial FEM Software for Brittle Fractures

    Fei Han1,*, Zhibin Li1, Jianyu Zhang1, Zhiying Liu1, Chen Yao1, Wenping Han1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09023

    Abstract The classical finite element method has been successfully applied to many engineering problems but not to cases with space discontinuity. A peridynamics-based finite element method (PeriFEM) is presented according to the principle of minimum potential energy, which enables discontinuity. First, the integral domain of peridynamics is reconstructed, and a new type of element called peridynamic element (PE) is defined. Although PEs are generated by the continuous elements (CEs) of classical FEM, they do not affect each other. Then, spatial discretization is performed based on PEs and CEs, and the linear equations about nodal displacement are… More >

  • Open Access

    ARTICLE

    ABAQUS and ANSYS Implementations of the Peridynamics-Based Finite Element Method (PeriFEM) for Brittle Fractures

    Fei Han*, Zhibin Li, Jianyu Zhang, Zhiying Liu, Chen Yao, Wenping Han

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2715-2740, 2023, DOI:10.32604/cmes.2023.026922 - 09 March 2023

    Abstract In this study, we propose the first unified implementation strategy for peridynamics in commercial finite element method (FEM) software packages based on their application programming interface using the peridynamics-based finite element method (PeriFEM). Using ANSYS and ABAQUS as examples, we present the numerical results and implementation details of PeriFEM in commercial FEM software. PeriFEM is a reformulation of the traditional FEM for solving peridynamic equations numerically. It is considered that the non-local features of peridynamics yet possesses the same computational framework as the traditional FEM. Therefore, this implementation benefits from the consistent computational frameworks of… More >

  • Open Access

    ARTICLE

    Nonlinear Flow Properties of Newtonian Fluids through Rough Crossed Fractures

    Zhenguo Liu1,2, Shuchen Li1,3, Richeng Liu3,*, Changzhou Zheng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1427-1440, 2023, DOI:10.32604/cmes.2023.025414 - 06 February 2023

    Abstract The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length, aperture, and surface roughness of fractures. A total of 252 computational runs are performed by creating 36 computational domains, in which the Navier-Stokes equations are solved. The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation. When the hydraulic gradient is small (i.e., 10−6), the streamlines are parallel to the fracture walls, indicating a linear streamline distribution. When the hydraulic gradient is large (i.e., 100), the streamlines are disturbed by a… More >

  • Open Access

    ARTICLE

    MPFracNet: A Deep Learning Algorithm for Metacarpophalangeal Fracture Detection with Varied Difficulties

    Geng Qin1, Ping Luo1, Kaiyuan Li1, Yufeng Sun1, Shiwei Wang1, Xiaoting Li1,2,3, Shuang Liu1,2,3, Linyan Xue1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 999-1015, 2023, DOI:10.32604/cmc.2023.035777 - 06 February 2023

    Abstract Due to small size and high occult, metacarpophalangeal fracture diagnosis displays a low accuracy in terms of fracture detection and location in X-ray images. To efficiently detect metacarpophalangeal fractures on X-ray images as the second opinion for radiologists, we proposed a novel one-stage neural network named MPFracNet based on RetinaNet. In MPFracNet, a deformable bottleneck block (DBB) was integrated into the bottleneck to better adapt to the geometric variation of the fractures. Furthermore, an integrated feature fusion module (IFFM) was employed to obtain more in-depth semantic and shallow detail features. Specifically, Focal Loss and Balanced… More >

  • Open Access

    REVIEW

    A Comparison of Shale Gas Fracturing Based on Deep and Shallow Shale Reservoirs in the United States and China

    Qixing Zhang1,2, Bing Hou1,2,*, Huiwen Pang1,2, Shan Liu1,2, Yue Zeng1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 471-507, 2022, DOI:10.32604/cmes.2022.020831 - 03 August 2022

    Abstract China began to build its national shale gas demonstration area in 2012. The central exploration, drilling, and development technologies for medium and shallow marine shale reservoirs with less than 3,500 m of buried depth in Changning-Weiyuan, Zhaotong, and other regions had matured. In this study, we macroscopically investigated the development history of shale gas in the United States and China and compared the physical and mechanical conditions of deep and shallow reservoirs. The comparative results revealed that the main reasons for the order-ofmagnitude difference between China’s annual shale gas output and the United States could… More >

Displaying 1-10 on page 1 of 23. Per Page