Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Experimental Study of Mode-I and Mode-II Interlaminar Fracture Characteristics of Poplar LVL

    Zhongping Xiao1, Chen Li1,2, Biqing Shu1, Shukai Tang2, Xinghuan Yang2, Yan Liu2,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 245-255, 2023, DOI:10.32604/jrm.2023.020751 - 10 August 2022

    Abstract Fracture is a common failure form of poplar laminated veneer lumber (LVL). In the present work, we performed an experimental study on the mode-I along-grain interlaminar fracture, mode-I cross-grain interlaminar fracture, and mode-II interlaminar fracture of poplar LVL. We investigated stress mechanisms, failure modes, and fracture toughness values of the different fracture types. The experimental results revealed that the crack in the mode-I along-grain interlaminar fracture specimen propagated along the prefabricated crack direction, and the crack tip broke. The mode-I cross-grain interlaminar fracture specimen had cracks in the vertical direction near the prefabricated crack. In… More >

  • Open Access

    ARTICLE

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

    Hao Jia1,2, Benhua Fei1,2, Changhua Fang1,2, Huanrong Liu1,2, Xiubiao Zhang1,2, Xinxin Ma1,2, Fengbo Sun1,2,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 473-490, 2023, DOI:10.32604/jrm.2022.023548 - 10 August 2022

    Abstract Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis, commonly known as moso bamboo, with a growth cycle of 3–8 years. Cellulose crystallinity in the bottom (B), middle (M) and top (T) of bamboo at different ages was calculated using peak height analysis in X-ray diffraction. Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics. The breaking load (BL), fracture energy (FE) and impact deflection (ID) of 3–8-yearold bamboo were found to be in the range of ~670–2120 N, ~5.17–15.55 J,… More > Graphic Abstract

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

  • Open Access

    ARTICLE

    ANN Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    Yuvaraj P1, A Ramachra Murthy2, Nagesh R Iyer3, S.K. Sekar4, Pijush Samui5

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 193-214, 2014, DOI:10.3970/cmc.2014.041.193

    Abstract This paper presents fracture mechanics based Artificial Neural Network (ANN) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (Gf), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). Failure load of the beam (Pmax) is also predicated by using ANN model. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack tip opening displacement have been outlined. Back-propagation training technique… More >

  • Open Access

    ARTICLE

    Multivariate Adaptive Regression Splines Model to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams

    P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3, Pijush Samui4, S.K. Sekar5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 73-97, 2013, DOI:10.3970/cmc.2013.036.073

    Abstract This paper presents Multivariate Adaptive Regression Splines (MARS) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (GF), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). This paper also presents the details of development of MARS model to predict failure load (Pmax) of high strength concrete (HSC) and ultra high strength concrete (UHSC) beam specimens. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress… More >

Displaying 1-10 on page 1 of 4. Per Page