Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Improved Clamped Diode Based Z-Source Network for Three Phase Induction Motor

    D. Bensiker Raja Singh1,*, R. Suja Mani Malar2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 683-702, 2023, DOI:10.32604/iasc.2023.028492 - 29 September 2022

    Abstract The 3Φ induction motor is a broadly used electric machine in industrial applications, which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load, high consumption of current and high ripple occurrence of ripples have reduced its preferences. The ultimate objective of this study is to control change in motor speed due to load variations. An improved Trans Z Source Inverter (ΓZSI) with a clamping diode is employed to maintain constant input voltage, reduce ripples and… More >

  • Open Access

    ARTICLE

    A Novel ANFIS Based SMC with Fractional Order PID Controller

    A. Jegatheesh1,*, M. Germin Nisha2, N. Kopperundevi3

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 745-760, 2023, DOI:10.32604/iasc.2023.028011 - 29 September 2022

    Abstract Interacting The highest storage capacity of a circular tank makes it popular in process industries. Because of the varying surface area of the cross-sections of the tank, this two-tank level system has nonlinear characteristics. Controlling the flow rate of liquid is one of the most difficult challenges in the production process. This proposed effort is critical in preventing time delays and errors by managing the fluid level. Several scholars have explored and explored ways to reduce the problem of nonlinearity, but their techniques have not yielded better results. Different types of controllers with various techniques… More >

  • Open Access

    ARTICLE

    Maximum Power Extraction Control Algorithm for Hybrid Renewable Energy System

    N. Kanagaraj*, Mohammed Al-Ansi

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 769-784, 2023, DOI:10.32604/csse.2023.029457 - 16 August 2022

    Abstract In this research, a modified fractional order proportional integral derivate (FOPID) control method is proposed for the photovoltaic (PV) and thermoelectric generator (TEG) combined hybrid renewable energy system. The faster tracking and steady-state output are aimed at the suggested maximum power point tracking (MPPT) control technique. The derivative order number (µ) value in the improved FOPID (also known as PIλDµ) control structure will be dynamically updated utilizing the value of change in PV array voltage output. During the transient, the value of µ is changeable; it’s one at the start and after reaching the maximum power… More >

  • Open Access

    ARTICLE

    Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer

    Ahmed M. Agwa1, Mohamed Abdeen2, Shaaban M. Shaaban1,3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5525-5541, 2022, DOI:10.32604/cmc.2022.031580 - 28 July 2022

    Abstract In this study, a bald eagle optimizer (BEO) is used to get optimal parameters of the fractional-order proportional–integral–derivative (FOPID) controller for load frequency control (LFC). Since BEO takes only a very short time in finding the optimal solution, it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads. Simulations and demonstrations are carried out using MATLAB-R2020b. The performance of the BEO-FOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies.… More >

  • Open Access

    ARTICLE

    Tuning Rules for Fractional Order PID Controller Using Data Analytics

    P. R. Varshini*, S. Baskar, M. Varatharajan, S. Sadhana

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1787-1799, 2022, DOI:10.32604/iasc.2022.024192 - 24 March 2022

    Abstract

    Flexibility and robust performance have made the FOPID (Fractional Order PID) controllers a better choice than PID (Proportional, Integral, Derivative) controllers. But the number of tuning parameters decreases the usage of FOPID controllers. Using synthetic data in available FOPID tuners leads to abnormal controller performances limiting their applicability. Hence, a new tuning methodology involving real-time data and overcomes the drawbacks of mathematical modeling is the need of the hour. This paper proposes a novel FOPID controller tuning methodology using machine learning algorithms. Feed Forward Back Propagation Neural Network (FFBPNN), Multi Least Squares Support Vector Regression

    More >

  • Open Access

    ARTICLE

    Chaotic Whale Optimized Fractional Order PID Controller Design for Desalination Process

    F. Kavin1,*, R. Senthilkumar2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2789-2806, 2022, DOI:10.32604/cmc.2022.021577 - 07 December 2021

    Abstract The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative (FOPID) controller with Chaotic Whale Optimization Algorithm (CWOA) for a RO desalination system. Continuous research on Reverse Osmosis (RO) desalination plants is a promising technique for satisfaction with sustainable and efficient RO plants. This work implements CWOA based FOPID for the simulation of reverse osmosis (RO) desalination process for both servo and regulatory problems. Mathematical modeling is a vital constituent of designing advanced and developed engineering processes, which helps to gain a deep study of processes to predict the… More >

  • Open Access

    ARTICLE

    PSO Based Torque Ripple Minimization Of Switched Reluctance Motor Using FPGA Controller

    A. Manjula1,*, L. Kalaivani2, M. Gengaraj2

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 451-465, 2021, DOI:10.32604/iasc.2021.016088 - 16 June 2021

    Abstract The fast-growing field of mechanical robotization necessitates a well-designed and controlled version of electric drives. The concept of control concerning mechanical characteristics also requires a methodology in which the system needs to be modeled precisely and deals with uncertainty. The proposed method provides the enhanced performance of Switched Reluctance Motor (SRM) by controlling its speed and minimized torque ripple. Proportional-Integral-Derivative (PID) controllers have drawn more attention in industry automation due to their ease and robustness. The performances are further improved by using fractional order (Non-integer) controllers. The Modified Particle Swarm Optimization (MPSO) based optimization approach… More >

Displaying 1-10 on page 1 of 7. Per Page