Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Infrared Spectroscopy-Based Chemometric Analysis for Lard Differentiation in Meat Samples

    Muhammad Aadil Siddiqui1,*, M. H. Md Khir1, Zaka Ullah2, Muath Al Hasan2, Abdul Saboor3, Saeed Ahmed Magsi1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2859-2871, 2023, DOI:10.32604/cmc.2023.034164 - 31 March 2023

    Abstract One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness. The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary, for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis. Fourier Transform Infrared Spectroscopy (FTIR) is used in this work to identify lard adulteration in cow, lamb, and chicken samples. A simplified extraction method was implied to obtain the lipids from pure and adulterated meat. Adulterated samples were obtained by mixing… More >

  • Open Access

    ARTICLE

    Cluster Analysis for IR and NIR Spectroscopy: Current Practices to Future Perspectives

    Simon Crase1,2, Benjamin Hall2, Suresh N. Thennadil3,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1945-1965, 2021, DOI:10.32604/cmc.2021.018517 - 21 July 2021

    Abstract Supervised machine learning techniques have become well established in the study of spectroscopy data. However, the unsupervised learning technique of cluster analysis hasn’t reached the same level maturity in chemometric analysis. This paper surveys recent studies which apply cluster analysis to NIR and IR spectroscopy data. In addition, we summarize the current practices in cluster analysis of spectroscopy and contrast these with cluster analysis literature from the machine learning and pattern recognition domain. This includes practices in data pre-processing, feature extraction, clustering distance metrics, clustering algorithms and validation techniques. Special consideration is given to the More >

Displaying 1-10 on page 1 of 2. Per Page