Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    UNet Based on Multi-Object Segmentation and Convolution Neural Network for Object Recognition

    Nouf Abdullah Almujally1, Bisma Riaz Chughtai2, Naif Al Mudawi3, Abdulwahab Alazeb3, Asaad Algarni4, Hamdan A. Alzahrani5, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1563-1580, 2024, DOI:10.32604/cmc.2024.049333 - 18 July 2024

    Abstract The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes. Various technologies, such as augmented reality-driven scene integration, robotic navigation, autonomous driving, and guided tour systems, heavily rely on this type of scene comprehension. This paper presents a novel segmentation approach based on the UNet network model, aimed at recognizing multiple objects within an image. The methodology begins with the acquisition and preprocessing of the image, followed by segmentation using the fine-tuned UNet architecture. Afterward, we use an annotation tool to accurately label… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal

    Yin Ni1, Wu Zeng2,*, Peng Xia1, Guang Stanley Yang3, Ruochen Tan4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5295-5312, 2024, DOI:10.32604/cmc.2024.049911 - 20 June 2024

    Abstract Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda, celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral analysis, existing approaches often only consider the power spectral density… More >

  • Open Access

    ARTICLE

    Design of a Multifrequency Signal Parameter Estimation Method for the Distribution Network Based on HIpST

    Bin Liu1, Shuai Liang1, Renjie Ding1, Shuguang Li2,*

    Energy Engineering, Vol.121, No.3, pp. 729-746, 2024, DOI:10.32604/ee.2023.044224 - 27 February 2024

    Abstract The application of traditional synchronous measurement methods is limited by frequent fluctuations of electrical signals and complex frequency components in distribution networks. Therefore, it is critical to find solutions to the issues of multifrequency parameter estimation and synchronous measurement estimation accuracy in the complex environment of distribution networks. By utilizing the multifrequency sensing capabilities of discrete Fourier transform signals and Taylor series for dynamic signal processing, a multifrequency signal estimation approach based on HT-IpDFT-STWLS (HIpST) for distribution networks is provided. First, by introducing the Hilbert transform (HT), the influence of noise on the estimation algorithm… More >

  • Open Access

    ARTICLE

    Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine

    Arslan Akram1,2, Imran Khan1, Javed Rashid2,3, Mubbashar Saddique4,*, Muhammad Idrees4, Yazeed Yasin Ghadi5, Abdulmohsen Algarni6

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1311-1328, 2024, DOI:10.32604/cmc.2023.040512 - 30 January 2024

    Abstract Algorithms for steganography are methods of hiding data transfers in media files. Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information, and these methods have made it feasible to handle a wide range of problems associated with image analysis. Images with little information or low payload are used by information embedding methods, but the goal of all contemporary research is to employ high-payload images for classification. To address the need for both low- and high-payload images, this work provides a machine-learning approach to steganography image classification… More >

  • Open Access

    ARTICLE

    3-Qubit Circular Quantum Convolution Computation Using the Fourier Transform with Illustrative Examples

    Artyom M. Grigoryan1,*, Sos S. Agaian2

    Journal of Quantum Computing, Vol.6, pp. 1-14, 2024, DOI:10.32604/jqc.2023.026981 - 30 January 2024

    Abstract In this work, we describe a method of calculation of the 1-D circular quantum convolution of signals represented by 3-qubit superpositions in the computational basis states. The examples of the ideal low pass and high pass filters are described and quantum schemes for the 3-qubit circular convolution are presented. In the proposed method, the 3-qubit Fourier transform is used and one addition qubit, to prepare the quantum superposition for the inverse quantum Fourier transform. It is considered that the discrete Fourier transform of one of the signals is known and calculated in advance and only More >

  • Open Access

    ARTICLE

    Visualization for Explanation of Deep Learning-Based Fault Diagnosis Model Using Class Activation Map

    Youming Guo, Qinmu Wu*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1489-1514, 2023, DOI:10.32604/cmc.2023.042313 - 29 November 2023

    Abstract Permanent magnet synchronous motor (PMSM) is widely used in various production processes because of its high efficiency, fast reaction time, and high power density. With the continuous promotion of new energy vehicles, timely detection of PMSM faults can significantly reduce the accident rate of new energy vehicles, further enhance consumers’ trust in their safety, and thus promote their popularity. Existing fault diagnosis methods based on deep learning can only distinguish different PMSM faults and cannot interpret and analyze them. Convolutional neural networks (CNN) show remarkable accuracy in image data analysis. However, due to the “black… More >

  • Open Access

    ARTICLE

    Infrared Spectroscopy-Based Chemometric Analysis for Lard Differentiation in Meat Samples

    Muhammad Aadil Siddiqui1,*, M. H. Md Khir1, Zaka Ullah2, Muath Al Hasan2, Abdul Saboor3, Saeed Ahmed Magsi1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2859-2871, 2023, DOI:10.32604/cmc.2023.034164 - 31 March 2023

    Abstract One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness. The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary, for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis. Fourier Transform Infrared Spectroscopy (FTIR) is used in this work to identify lard adulteration in cow, lamb, and chicken samples. A simplified extraction method was implied to obtain the lipids from pure and adulterated meat. Adulterated samples were obtained by mixing… More >

  • Open Access

    ARTICLE

    Dual Image Cryptosystem Using Henon Map and Discrete Fourier Transform

    Hesham Alhumyani*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2933-2945, 2023, DOI:10.32604/iasc.2023.034689 - 15 March 2023

    Abstract This paper introduces an efficient image cryptography system. The proposed image cryptography system is based on employing the two-dimensional (2D) chaotic henon map (CHM) in the Discrete Fourier Transform (DFT). The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures. In the proposed DFT-based CHM image cryptography, the confusion is employed using the CHM while the diffusion is realized using the DFT. So, the proposed DFT-based CHM image cryptography achieves both confusion and diffusion characteristics. The encryption procedure starts by applying the DFT on the image then the DFT More >

  • Open Access

    ARTICLE

    Spectral Analysis and Validation of Parietal Signals for Different Arm Movements

    Umashankar Ganesan1,*, A. Vimala Juliet2, R. Amala Jenith Joshi3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2849-2863, 2023, DOI:10.32604/iasc.2023.033759 - 15 March 2023

    Abstract Brain signal analysis plays a significant role in attaining data related to motor activities. The parietal region of the brain plays a vital role in muscular movements. This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements; perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm. This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease (PD).… More >

Displaying 1-10 on page 1 of 49. Per Page