Priyadharsini Selvaraj1,*, Senthil Kumar Jagatheesaperumal2, Karthiga Marimuthu1, Oviya Saravanan1, Bader Fahad Alkhamees3, Mohammad Mehedi Hassan3,*
CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1575-1594, 2025, DOI:10.32604/cmes.2025.064138
- 30 May 2025
Abstract With expeditious advancements in AI-driven facial manipulation techniques, particularly deepfake technology, there is growing concern over its potential misuse. Deepfakes pose a significant threat to society, particularly by infringing on individuals’ privacy. Amid significant endeavors to fabricate systems for identifying deepfake fabrications, existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations, thereby hindering their broad applicability to images and videos produced by unfamiliar technologies. In this manuscript, we endorse resilient training tactics to amplify generalization capabilities. In adversarial training, models are trained using More >