Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (80)
  • Open Access

    ARTICLE

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

    Ali M. H. Al-Obaidy*, Ekhlas M. Fayyadh, Amer M. Al-Dabagh

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1421-1442, 2024, DOI:10.32604/fhmt.2024.055063 - 30 October 2024

    Abstract High heat dissipation is required for miniaturization and increasing the power of electronic systems. Pool boiling is a promising option for achieving efficient heat dissipation at low wall superheat without the need for moving parts. Many studies have focused on improving heat transfer efficiency during boiling by modifying the surface of the heating element. This paper presents an experimental investigation on improving pool boiling heat transfer using an open microchannel. The primary goal of this work is to investigate the impact of the channel geometry characteristics on boiling heat transfer. Initially, rectangular microchannels were prepared… More > Graphic Abstract

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

  • Open Access

    ARTICLE

    Robust Particle Swarm Optimization Algorithm for Modeling the Effect of Oxides Thermal Properties on AMIG 304L Stainless Steel Welds

    Rachid Djoudjou1,*, Abdeljlil Chihaoui Hedhibi3, Kamel Touileb1, Abousoufiane Ouis1, Sahbi Boubaker2, Hani Said Abdo4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1809-1825, 2024, DOI:10.32604/cmes.2024.053621 - 27 September 2024

    Abstract There are several advantages to the MIG (Metal Inert Gas) process, which explains its increased use in various welding sectors, such as automotive, marine, and construction. A variant of the MIG process, where the same equipment is employed except for the deposition of a thin layer of flux before the welding operation, is the AMIG (Activated Metal Inert Gas) technique. This study focuses on investigating the impact of physical properties of individual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can help determine a relationship among weld depth… More >

  • Open Access

    ARTICLE

    Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq

    Ahmed Mustaffa Saleem, Abdullah A. Badr, Bahjat Hassan Alyas, Omar Rafae Alomar*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1231-1244, 2024, DOI:10.32604/fhmt.2024.053770 - 30 August 2024

    Abstract This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq. The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software. The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day. The wall types are selected: the first type consists of cement mortar, brick, and gypsum, the second type consists of cement mortar, brick, gypsum, and plaster and the third type… More >

  • Open Access

    ARTICLE

    Casson Nanofluid Flow with Cattaneo-Christov Heat Flux and Chemical Reaction Past a Stretching Sheet in the Presence of Porous Medium

    Mahzad Ahmed1, Raja Mussadaq Yousaf2, Ali Hassan3,4,*, B. Shankar Goud5

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1261-1276, 2024, DOI:10.32604/fhmt.2024.048091 - 30 August 2024

    Abstract In the current work, inclined magnetic field, thermal radiation, and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet. Modified Buongiorno’s nanofluid model has been used to model the flow governing equations. The stretching surface is embedded in a porous medium. By using similarity transformations, the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations. The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method… More >

  • Open Access

    ARTICLE

    Ultra-conservative noncoding RNA uc.243 confers chemo-resistance by facilitating the efflux of the chemotherapeutic drug in ovarian cancer

    SHAN JIANG1,2, XIUFENG LIN2, YANFEI CHEN3, XINNING LI3, JIALI KANG1,4,*

    BIOCELL, Vol.48, No.8, pp. 1265-1273, 2024, DOI:10.32604/biocell.2024.051478 - 02 August 2024

    Abstract Background: Despite improvements in objective response rates to cisplatin-based combination chemotherapy, the majority of advanced ovarian cancer remains suboptimal, resulting in poor survival. it has been found that non-coding RNAs (ncRNAs) not only participate in the transmission of signals between various cells but also participate in tumor immunity and anti-tumor immune responses, thereby regulating tumor occurrence and development. However, the function and detailed mechanism of ultraconserved RNA (ucRNA) in ovarian cancer chemoresistance is still unclear. Methods: Western blotting assay, Quantitative real-time PCR analysis (qPCR), and Kaplan-Meier Plotter analysis were performed to analyze the expression and prognosis… More >

  • Open Access

    ARTICLE

    Unsteady MHD Casson Nanofluid Flow Past an Exponentially Accelerated Vertical Plate: An Analytical Strategy

    T. Aghalya, R. Tamizharasi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 431-460, 2024, DOI:10.32604/cmes.2024.046635 - 16 April 2024

    Abstract In this study, the characteristics of heat transfer on an unsteady magnetohydrodynamic (MHD) Casson nanofluid over an exponentially accelerated vertical porous plate with rotating effects were investigated. The flow was driven by the combined effects of the magnetic field, heat radiation, heat source/sink and chemical reaction. Copper oxide () and titanium oxide () are acknowledged as nanoparticle materials. The nondimensional governing equations were subjected to the Laplace transformation technique to derive closed-form solutions. Graphical representations are provided to analyze how changes in physical parameters, such as the magnetic field, heat radiation, heat source/sink and chemical… More >

  • Open Access

    ARTICLE

    Effects of Viscous Dissipation and Periodic Heat Flux on MHD Free Convection Channel Flow with Heat Generation

    Mustafa Abdullah*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 141-156, 2024, DOI:10.32604/fhmt.2024.046788 - 21 March 2024

    Abstract This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic (MHD) flow through a vertical channel with heat generation. A theoretical approach is employed. The channel is exposed to a perpendicular magnetic field, while one side experiences a periodic heat flow, and the other side undergoes a periodic temperature variation. Numerical solutions for the governing partial differential equations are obtained using a finite difference approach, complemented by an eigenfunction expansion method for analytical solutions. Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields. This offers comprehensive More >

  • Open Access

    ARTICLE

    Steady Natural Convection from a Vertical Hot Plate with Variable Radiation

    Dewi Puspitasari1, Diah Kusuma Pratiwi1, Pramadhony Amran2, Kaprawi Sahim1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 305-315, 2024, DOI:10.32604/fhmt.2023.041882 - 21 March 2024

    Abstract The natural convection from a vertical hot plate with radiation and constant flux is studied numerically to know the velocity and temperature distribution characteristics over a vertical hot plate. The governing equations of the natural convection in two-dimension are solved with the implicit finite difference method, whereas the discretized equations are solved with the iterative relaxation method. The results show that the velocity and the temperature increase along the vertical wall. The influence of the radiation parameter in the boundary layer is significant in increasing the velocity and temperature profiles. The velocity profiles increase with More >

  • Open Access

    PROCEEDINGS

    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each… More >

  • Open Access

    REVIEW

    High density lipoprotein as a therapeutic target: Focus on its functionality

    LEONARDO GóMEZ ROSSO, BELéN DAVICO, EZEQUIEL LOZANO CHIAPPE, WALTER TETZLAFF, LAURA BOERO, FERNANDO BRITES, MAXIMILIANO MARTíN*

    BIOCELL, Vol.47, No.11, pp. 2361-2383, 2023, DOI:10.32604/biocell.2023.031063 - 27 November 2023

    Abstract Cardiovascular diseases (CVDs) are the leading cause of death globally. CVDs are a group of disorders of the heart and blood vessels and include coronary heart disease, cerebrovascular disease and rheumatic heart disease among other conditions. There are multiple independent risk factors for CVD, including hypertension, age, smoking, insulin resistance, elevated low-density lipoprotein cholesterol (LDL-C) levels, and triglyceride levels. LDL-C levels have traditionally been the target for therapies aimed at reducing CVD risk. High density lipoprotein (HDL) constitutes the only lipoprotein fraction with atheroprotective functions. Early HDL-targeted therapies have focused on increasing HDL-C levels. However,… More > Graphic Abstract

    High density lipoprotein as a therapeutic target: Focus on its functionality

Displaying 1-10 on page 1 of 80. Per Page