Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,317)
  • Open Access

    PROCEEDINGS

    Analysis of Aeroacousticelastic Response for Cavity-Plate System Undergoing Supersonic Flow

    Yifei Li1, Ruisen Yang1, Dan Xie1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013359

    Abstract Cavity closed with a thin plate is a common structure in aircrafts, such as landing gear compartments and skin skeletons. The plate undergoing aerodynamic pressure on top is generally vibrating in the amplitude of thickness, which will induce an acoustic pressure in the cavity underneath and it will further affect the panel response. Considering both aerodynamic and acoustic pressure on the panel, there will be an interest to investigate the aero-acoustic-structure coupling mechanism and the aeroacoustoelastic response of the plate. Von Karman plate theory, piston theory and two-dimensional partial differential acoustic equation are employed for… More >

  • Open Access

    PROCEEDINGS

    A New Flow Regulation Strategy by Coupling Multiple Methods for High Efficiency Turbine with Wide Conditions

    Ziran Li1, Weihao Zhang2, Lei Qi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013344

    Abstract In the future, the wide speed and altitude range aviation engine will have features such as "wide range of high-bypass-ratio adjustment" and "wide range of high-pressure-ratio adjustment". Therefore, its turbine will work in a very wide range of operating conditions, with a large flow regulation range. Under conditions of high-rate flow regulation, existing flow control technologies can significantly reduce turbine efficiency. To support the performance and technical specifications of future engines, their low-pressure turbines need to maintain high operational efficiency within a flow regulation range and power output range that exceed those of current aircraft engines.
    More >

  • Open Access

    PROCEEDINGS

    Marangoni Convection Shifting, Heat Accumulation and Microstructure Evolution of Laser Directed Energy Deposition

    Donghua Dai1,2,*, Yanze Li1,2, Dongdong Gu1,2,*, Wentai Zhao1,2, Yuhang Long1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012500

    Abstract Laser Directed Energy Deposition (LDED) technology was employed to fabricate internal structures within the hollow interiors of rotating parts, such as tubes and cylinders. A three-dimensional transient multiphysics model for C276 material was developed, which anticipated the impact of angular velocity from tube rotation on various aspects. This model, validated by experiments, focused on the melt pool morphology, Marangoni convection, oriented crystal microevolution, and deposited material microhardness. It was found that at 150 ms deposition, the dimensions of the melt pool stabilized. With an increase in the Peclet number, heat transfer within the melt pool… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation of Fluid Flow Evolution in Porous Sea Ice Based on TMPD

    Ying Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011329

    Abstract Granular and columnar sea ice formed random pores containing gas and brine while growing in a polar environment. Building an appropriate microstructure of sea ice model to reveal its material singularities using standard methods is difficult. In this study, we develop a porous sea ice model based on coupled thermos-mechanical peridynamics [1-3] by considering the fluid flow and material transport in pores. The novel features of using the porous sea ice peridynamic model are as follows: (1) To establish the porous sea ice model, the sea ice pore equation is combined with the peridynamic equations. More >

  • Open Access

    PROCEEDINGS

    Bubble Dynamics Within a Droplet: A New Mechanism for Mixing in Binary Immiscible Fluid Systems

    Zhesheng Zhao1, Shuai Li1, Rui Han2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012080

    Abstract This study investigates the interactions between droplets and bubbles within water-in-oil (O/W) and oil-in-water (W/O) systems, a fundamental problem of bubble dynamics in binary immiscible fluid systems. Considering the density ratio between the two fluids and the bubble-to-droplet size ratio, we have refined the classical spherical bubble pulsation equation, Rayleigh collapse time, and the natural frequency. In our experimental study, we found that the Rayleigh-Taylor (RT) instability hardly develops on the surface of the droplet when the densities of the two liquids are comparable. This phenomenon is explained using the classic theory of spherical RT More >

  • Open Access

    PROCEEDINGS

    Effect of Channel Aspect Ratio on Flow Boiling in Mini-Channels

    Wei Lu1,3, Yujie Chen2,*, Bo Yu2, Dongliang Sun2, Wei Zhang2, Yanru Yang1,3, Xiaodong Wang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012265

    Abstract Flow boiling offers superior heat transfer performance compared to single-phase flow, therefore holding significant potential for application in thermal management. In mini-channel applications, due to their narrow dimensions, the size characteristics of the channel have a particularly notable impact on bubble dynamics and flow boiling heat transfer performance. This study employs the VOSET method to explore the impact of different aspect ratios (1:3, 1:2, 1:1, 2:1, 3:1) on the heat transfer performance of mini-channels. By maintaining a consistent equivalent diameter across the channels, the study aims to unveil the mechanism by which aspect ratios affect… More >

  • Open Access

    PROCEEDINGS

    Study on the Flow Dead Zone in the Shell of an Industrial Tubular Fixed Bed Reactor

    Binbin Hao1, Zhenming Liu1,*, Yajun Deng1,*, Dongliang Sun1, Wei Zhang1, Bo Yu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012194

    Abstract The tubular fixed bed reactor is widely used in industrial production because of its strong applicability, high stability and easy maintenance. The flow dead zone in the shell of the reactor will significantly affect the overall performance of the reactor. Reducing the flow dead zone in the shell is the main way to optimize the performance of tubular fixed bed reactor. At present, most of the research on the flow dead zone of the reactor is based on the simplified reactor model, the number and size of tubes are far from the industrial requirements. In… More >

  • Open Access

    PROCEEDINGS

    Simulation of Temporary Plugging Agent Flow State in Fractures of Hot Dry Rock Considering Environmental Changes

    Zongze Li1, Zirui Yang2, Yue Wu3, Chunming He4, Bo Yu2, Daobing Wang2,*, Yueshe Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-4, 2024, DOI:10.32604/icces.2024.012090

    Abstract Geothermal energy is an important renewable energy source, where hot dry rock (HDR) constitutes the primary component, accounting for approximately 90% of the resource. Therefore, the establishment of an efficient HDR geothermal utilization system is a core issue in geothermal resource development. Hydraulic fracturing (HF) technology serves as a crucial means aimed at enhancing the complexity of underground fracture networks and increasing heat exchange efficiency, thus improving the performance of HDR geothermal utilization systems. However, the fracture structure formed by conventional HF techniques is relatively simple, resulting in limited heat exchange areas. Hence, the temporary… More >

  • Open Access

    PROCEEDINGS

    Treatments of Fractures Intersection in the Enriched-Embedded Discrete Fracture Model (nEDFM) for Porous Flow

    Kaituo Jiao1, Dongxu Han2,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-3, 2024, DOI:10.32604/icces.2024.011520

    Abstract Motivated by the fractures being very thin compared to the size of rock matrix, utilizing the non-conforming grid is an efficient approach to simulate fluid flow in fractured porous media. The embedded discrete fracture model (EDFM) is the typical one that using the conforming grid and modelled based on the finite volume method (FVM) framework. The EDFM maintains advantages of mass conservation and low computational complexity, but it cannot characterize blocking fractures and has a low accuracy on the mass exchange between fractures and matrix [1]. In our previous work [2], we developed the enriched-EDFM… More >

  • Open Access

    PROCEEDINGS

    High-Resolution Flow Field Reconstruction Based on Graph-Embedding Neural Network

    Weixin Jiang1,*, Zongze Li2, Qing Yuan3,*, Junhua Gong2, Bo Yu4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-3, 2024, DOI:10.32604/icces.2024.011266

    Abstract High resolution flow field results are of great significance for exploring physical laws and guiding practical engineering practice. However, traditional activities based on experiments or direct numerical solutions to obtain high-resolution flow fields typically require a significant amount of computational time or resources. In response to this challenge, this study proposes an efficient and robust high-resolution flow field reconstruction method by embedding graph theory into neural networks, to adapt to low data volume situations. In the high resolution flow field reconstruction problem of an NS equation, the proposed model has a lower mean squared error More >

Displaying 1-10 on page 1 of 1317. Per Page