Khader M. Hamdia2, Hamid Ghasemi3, Xiaoying Zhuang4,5, Naif Alajlan1, Timon Rabczuk1,2,*
CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 79-87, 2019, DOI:10.32604/cmc.2019.05882
Abstract In this study, machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the flexoelectricity. We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters are selected to construct a deep neural network (DNN) model. They are the Young's modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric coefficients and the order of the shape function. The outputs of interest are the More >