Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    A GPU-Based Parallel Algorithm for 2D Large Deformation Contact Problems Using the Finite Particle Method

    Wei Wang1,2, Yanfeng Zheng1,3, Jingzhe Tang1, Chao Yang1, Yaozhi Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 595-626, 2021, DOI:10.32604/cmes.2021.017321 - 08 October 2021

    Abstract Large deformation contact problems generally involve highly nonlinear behaviors, which are very time-consuming and may lead to convergence issues. The finite particle method (FPM) effectively separates pure deformation from total motion in large deformation problems. In addition, the decoupled procedures of the FPM make it suitable for parallel computing, which may provide an approach to solve time-consuming issues. In this study, a graphics processing unit (GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems. The fundamentals of the FPM for planar solids are first briefly introduced, including the equations of motion of particles… More >

  • Open Access

    ARTICLE

    Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU

    Jingzhe Tang1, Yanfeng Zheng1, Chao Yang1, Wei Wang1, Yaozhi Luo1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 5-31, 2020, DOI:10.32604/cmes.2020.08104 - 01 January 2020

    Abstract As a novel kind of particle method for explicit dynamics, the finite particle method (FPM) does not require the formation or solution of global matrices, and the evaluations of the element equivalent forces and particle displacements are decoupled in nature, thus making this method suitable for parallelization. The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis. To this end, a GPU-accelerated parallel strategy for the FPM is proposed in this paper. By taking advantage of the independence of each step of the FPM… More >

  • Open Access

    ARTICLE

    Form Finding and Collapse Analysis of Cable Nets Under Dynamic Loads Based on Finite Particle Method

    Ying Yu1,*, Ping Xia1, Chunwei Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 73-89, 2018, DOI:10.31614/cmes.2018.04063

    Abstract This paper presents form finding and collapse analysis of cable net structure under strong wind using the finite particle method (FPM). As a kind of particle method, the theoretical fundamentals of the FPM are given. Methods to handle geometric and material nonlinearities of cable element are proposed. The fracture criterion and model for cable element are built to simulate the failure of cable nets. The form-finding and load analysis of two cable nets are then performed in order to initialize the successive of nonlinear analysis. The failure progress of cable nets under dynamic loads is More >

  • Open Access

    ARTICLE

    Particle Methods for a 1D Elastic Model Problem: Error Analysis and Development of a Second-Order Accurate Formulation

    D. Asprone1, F. Auricchio2, G. Manfredi1, A. Prota1, A. Reali2, G. Sangalli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.1, pp. 1-22, 2010, DOI:10.3970/cmes.2010.062.001

    Abstract Particle methods represent some of the most investigated meshless approaches, applied to numerical problems, ranging from solid mechanics to fluid-dynamics and thermo-dynamics. The objective of the present paper is to analyze some of the proposed particle formulations in one dimension, investigating in particular how the different approaches address second derivative approximation. With respect to this issue, a rigorous analysis of the error is conducted and a novel second-order accurate formulation is proposed. Hence, as a benchmark, three numerical experiments are carried out on the investigated formulations, dealing respectively with the approximation of the second derivative More >

Displaying 1-10 on page 1 of 4. Per Page