Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (286)
  • Open Access

    ARTICLE

    Investigation of the Effect of the Force Arm on the Bending Capability of Prestressed Glulam Beam

    Yan Zhao1,*, Yuanyuan Wu2, Shengliang He3, Zhenglu Gao1, Ziyan Huang1, Chenzheng Lv4

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 641-661, 2024, DOI:10.32604/sdhm.2024.049601

    Abstract Prestress enables the Glulam beam could make full use of the compression strength, and then increase the span, but it still could not reduce all drawbacks, such as cross-section weakening and small force arm. To avoid slotting and ensure suitable tension and compression couple, one kind of novel anchor has been proposed, which could meet the bearing capacity requirement. And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1: 2 was simulated, to investigate the effect of the force arm on bending capacities, failure modes, and deformation performance. Results More > Graphic Abstract

    Investigation of the Effect of the Force Arm on the Bending Capability of Prestressed Glulam Beam

  • Open Access

    ARTICLE

    Finite Element Analysis for Magneto-Convection Heat Transfer Performance in Vertical Wavy Surface Enclosure: Fin Size Impact

    Md. Fayz-Al-Asad1,4, F. Mebarek-Oudina2,*, H. Vaidya3, Md. Shamim Hasan4, Md. Manirul Alam Sarker4, A. I. Ismail5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 817-837, 2024, DOI:10.32604/fhmt.2024.050814

    Abstract The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottom wall. We use a finite element method based on Galerkin weighted residual (GWR) techniques to set up the appropriate governing equations for the present flow model. We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity. We graphically represent the numerical results, such as isotherms, streamlines, velocity profiles,… More >

  • Open Access

    ARTICLE

    Quantifying Uncertainty in Dielectric Solids’ Mechanical Properties Using Isogeometric Analysis and Conditional Generative Adversarial Networks

    Shuai Li1, Xiaodong Zhao1,2,*, Jinghu Zhou1, Xiyue Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2587-2611, 2024, DOI:10.32604/cmes.2024.052203

    Abstract Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains, necessitating the development of robust computational methods. This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis (CGAN-IGA) to assess the uncertainty of dielectric solids’ mechanical characteristics. IGA is utilized for the precise computation of electric potentials in dielectric, piezoelectric, and flexoelectric materials, leveraging its advantage of integrating seamlessly with Computer-Aided Design (CAD) models to maintain exact geometrical fidelity. The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials, More >

  • Open Access

    ARTICLE

    Modeling the Interaction between Vacancies and Grain Boundaries during Ductile Fracture

    Mingjian Li, Ping Yang*, Pengyang Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2019-2034, 2024, DOI:10.32604/cmes.2024.048334

    Abstract The experimental results in previous studies have indicated that during the ductile fracture of pure metals, vacancies aggregate and form voids at grain boundaries. However, the physical mechanism underlying this phenomenon remains not fully understood. This study derives the equilibrium distribution of vacancies analytically by following thermodynamics and the micromechanics of crystal defects. This derivation suggests that vacancies cluster in regions under hydrostatic compression to minimize the elastic strain energy. Subsequently, a finite element model is developed for examining more general scenarios of interaction between vacancies and grain boundaries. This model is first verified and More >

  • Open Access

    ARTICLE

    Shield Excavation Analysis: Ground Settlement & Mechanical Responses in Complex Strata

    Baojun Qin1, Guangwei Zhang1, Wei Zhang2,*

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 341-360, 2024, DOI:10.32604/sdhm.2024.047405

    Abstract This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this construction method impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnel segments. It investigates the impact of shield construction on surface settlement, mechanical characteristics of nearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizing the Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using the ABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force, and… More >

  • Open Access

    ARTICLE

    Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures

    AL-Bukhaiti Khalil1, Yanhui Liu1,*, Shichun Zhao1, Daguang Han2

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 223-254, 2024, DOI:10.32604/sdhm.2024.044751

    Abstract This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision. The initial discussion revolves around the stress and strain of large deformation during a collision, followed by explanations of the fundamental finite element solution method for addressing such issues. The hourglass mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed and implemented within the finite element framework. The paper further investigates the dynamic response and failure modes of Reinforced Concrete (RC)… More >

  • Open Access

    ARTICLE

    Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions

    Jiaqi Wu1, Li Zhuo1,*, Jianliang Pei1, Yao Li2, Hongqiang Xie1, Jiaming Wu1, Huaizhong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 621-645, 2024, DOI:10.32604/cmes.2024.046398

    Abstract The surrounding geological conditions and supporting structures of underground engineering are often updated during construction, and these updates require repeated numerical modeling. To improve the numerical modeling efficiency of underground engineering, a modularized and parametric modeling cloud server is developed by using Python codes. The basic framework of the cloud server is as follows: input the modeling parameters into the web platform, implement Rhino software and FLAC3D software to model and run simulations in the cloud server, and return the simulation results to the web platform. The modeling program can automatically generate instructions that can run… More >

  • Open Access

    ARTICLE

    Contact Stress Reliability Analysis Model for Cylindrical Gear with Circular Arc Tooth Trace Based on an Improved Metamodel

    Qi Zhang1,2,4,5, Zhixin Chen3, Yang Wu4,*, Guoqi Xiang2, Guang Wen1, Xuegang Zhang2, Yongchun Xie2, Guangchun Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 593-619, 2024, DOI:10.32604/cmes.2023.046319

    Abstract Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace (referred to as CATT gear), a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis. In this study, a mathematical relationship between design parameters and contact stress is formulated using the Kriging Metamodel. To enhance the model’s accuracy, we propose a new hybrid algorithm that merges the genetic… More >

  • Open Access

    ARTICLE

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

    Mohammad Javad SheikhMozafari*

    Sound & Vibration, Vol.58, pp. 81-100, 2024, DOI:10.32604/sv.2024.048897

    Abstract Mitigating low-frequency noise poses a significant challenge for acoustic engineers, due to their long wavelength, with conventional porous sound absorbers showing limitations in attenuating such noise. An effective strategy involves combining porous materials with micro-perforated plates (MPP) to address this issue. Given the significant impact of structural variables like panel thickness, hole diameter, and air gap on the acoustic characteristics of MPP, achieving the optimal condition demands numerous sample iterations. The impedance tube’s considerable expense for sound absorption measurement and the substantial cost involved in fabricating each sample using a 3D printer underscore the advantage… More > Graphic Abstract

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

  • Open Access

    ARTICLE

    Stability and Error Analysis of Reduced-Order Methods Based on POD with Finite Element Solutions for Nonlocal Diffusion Problems

    Haolun Zhang1, Mengna Yang1, Jie Wei2, Yufeng Nie2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 49-77, 2024, DOI:10.32604/dedt.2023.044180

    Abstract This paper mainly considers the formulation and theoretical analysis of the reduced-order numerical method constructed by proper orthogonal decomposition (POD) for nonlocal diffusion problems with a finite range of nonlocal interactions. We first set up the classical finite element discretization for nonlocal diffusion equations and briefly explain the difference between nonlocal and partial differential equations (PDEs). Nonlocal models have to handle double integrals when using finite element methods (FEMs), which causes the generation of algebraic systems to be more challenging and time-consuming, and discrete systems have less sparsity than those for PDEs. So we establish… More >

Displaying 1-10 on page 1 of 286. Per Page