Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (307)
  • Open Access

    ARTICLE

    Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method

    Yunjun Lee1, Sanggyu Cheon2, Woo Chul Chung1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3381-3403, 2025, DOI:10.32604/cmes.2025.073729 - 23 December 2025

    Abstract The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower. The rotating packed bed (RPB) has emerged as a promising alternative due to its small footprint and high mass transfer performance. However, despite its advantages, the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied, and no international design standards currently exist for RPBs. To address this gap, this study performed a comprehensive finite element analysis (FEA) using ANSYS to investigate the structural and dynamic characteristics of an… More >

  • Open Access

    ARTICLE

    A Comprehensive Numerical and Data-Driven Investigations of Nanofluid Heat Transfer Enhancement Using the Finite Element Method and Artificial Neural Network

    Adnan Ashique1,#, Khalid Masood2, Usman Afzal1, Mati Ur Rahman2, Maddina Dinesh Kumar3, Sohaib Abdal3, Nehad Ali Shah1,#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3627-3699, 2025, DOI:10.32604/cmes.2025.072523 - 23 December 2025

    Abstract This study outlines a quantitative and data-driven study of the mixed convection heat transfer processes that concern Cu-water nanofluids in a Γ-shaped enclosure with one to five rotating cylinders. The dimensionless equations of mass, momentum, and energy are solved using the finite element method as implemented in the COMSOL Multiphysics 6.3 software in different rotating Reynolds numbers and cylinder geometries. An artificial Neural Network that is trained using Bayesian Regularization on data produced by the COMSOL is utilized to estimate the average Nusselt numbers. The analysis is conducted for a wide range of rotational… More >

  • Open Access

    ARTICLE

    MHD Convective Flow of CNT/Water-Nanofluid in a 3D Cavity Incorporating Hot Cross-Shaped Obstacle

    Faiza Benabdallah1, Kaouther Ghachem1, Walid Hassen2, Haythem Baya2, Hind Albalawi3, Lioua Kolsi4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1839-1861, 2025, DOI:10.32604/cmes.2025.071678 - 26 November 2025

    Abstract Current developments in magnetohydrodynamic (MHD) convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems, particularly through the use of carbon nanotube (CNT)–based fluids that offer exceptional thermal conductivity. Despite extensive research on MHD natural convection in enclosures, the combined effects of complex obstacle geometries, magnetic fields, and CNT nanofluids in three-dimensional configurations remain insufficiently explored. This research investigates MHD natural convection of carbon nanotube (CNT)-water nanofluid within a three-dimensional cavity. The study considers an inclined cross-shaped hot obstacle, a configuration not extensively explored in previous works. The work aims… More >

  • Open Access

    ARTICLE

    Deep Learning Model for Identifying Internal Flaws Based on Image Quadtree SBFEM and Deep Neural Networks

    Hanyu Tao1,2, Dongye Sun1,2, Tao Fang1,2, Wenhu Zhao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 521-536, 2025, DOI:10.32604/cmes.2025.072089 - 30 October 2025

    Abstract Structural internal flaws often weaken the performance and integral stability, while traditional nondestructive testing or inversion methods face challenges of high cost and low efficiency in quantitative flaw identification. To quickly identify internal flaws within structures, a deep learning model for flaw detection is proposed based on the image quadtree scaled boundary finite element method (SBFEM) combined with a deep neural network (DNN). The training dataset is generated from the numerical simulations using the balanced quadtree algorithm and SBFEM, where the structural domain is discretized based on recursive decomposition principles and mesh refinement is automatically… More >

  • Open Access

    ARTICLE

    An Automated Adaptive Finite Element Methodology for 2D Linear Elastic Fatigue Crack Growth Simulation

    Abdulnaser M. Alshoaibi*, Yahya Ali Fageehi

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 189-214, 2025, DOI:10.32604/cmes.2025.071583 - 30 October 2025

    Abstract Fatigue crack growth is a critical phenomenon in engineering structures, accounting for a significant percentage of structural failures across various industries. Accurate prediction of crack initiation, propagation paths, and fatigue life is essential for ensuring structural integrity and optimizing maintenance schedules. This paper presents a comprehensive finite element approach for simulating two-dimensional fatigue crack growth under linear elastic conditions with adaptive mesh generation. The source code for the program was developed in Fortran 95 and compiled with Visual Fortran. To achieve high-fidelity simulations, the methodology integrates several key features: it employs an automatic, adaptive meshing… More >

  • Open Access

    PROCEEDINGS

    A Unified High-Order Damaged Elasticity Theory and Solution Procedure for Quasi-Brittle Fracture

    Yuheng Cao, Chunyu Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.010692

    Abstract A unified high-order damaged elasticity theory is proposed for quasi-brittle fracture problems by incorporating higher-order gradients for both strain and damage fields. The single scale parameter is defined by the size of the representative volume element (RVE). It formulates the degraded strain energy density to capture size effects and localized damage initiation/propagation with a damage criterion grounded in experimental observations. The structural deformation is solved by using the principle of minimum potential energy with the Augmented Lagrangian Method (ALM) enforcing damage evolution constraints. This simplifies the equilibrium equations, enabling efficient numerical solutions via the Galerkin More >

  • Open Access

    ARTICLE

    A Time-Domain Irregular Wave Model with Different Random Numbers for FOWT Support Structures

    Shen-Haw Ju*, Yi-Chen Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1631-1654, 2025, DOI:10.32604/cmes.2025.067679 - 31 August 2025

    Abstract This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform (IFFT). Considering the substantial displacement effects that Floating Offshore Wind Turbine (FOWT) support structures undergo when subjected to wave loads, the time-domain wave method is more suitable, while the frequency-domain method requiring IFFT cannot be used for moving bodies. Nonetheless, the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle. Thus, the paper incorporates various numerical schemes, including parallel computing and extrapolation of wave forces… More >

  • Open Access

    ARTICLE

    Numerical Homogenization Approach for the Analysis of Honeycomb Sandwich Shell Structures

    Martina Rinaldi1,2, Stefano Valvano1,*, Francesco Tornabene2, Rossana Dimitri2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2403-2428, 2025, DOI:10.32604/cmc.2025.060672 - 16 April 2025

    Abstract This study conducts a thorough examination of honeycomb sandwich panels with a lattice core, adopting advanced computational techniques for their modeling. The research extends its analysis to investigate the natural frequency behavior of sandwich panels, encompassing the comprehensive assessment of the entire panel structure. At its core, the research applies the Representative Volume Element (RVE) theory to establish the equivalent material properties, thereby enhancing the predictive capabilities of lattice structure simulations. The methodology applies these properties in the core of infinite panels, which are modeled using double periodic boundary conditions to explore their natural frequencies.… More >

  • Open Access

    ARTICLE

    Coupling Magneto-Electro-Elastic Multiscale Finite Element Method for Transient Responses of Heterogeneous MEE Structures

    Xiaolin Li1, Xinyue Li1, Liming Zhou2,*, Hangran Yang1, Xiaoqing Yuan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3821-3841, 2025, DOI:10.32604/cmc.2025.059937 - 06 March 2025

    Abstract Magneto-electro-elastic (MEE) materials are widely utilized across various fields due to their multi-field coupling effects. Consequently, investigating the coupling behavior of MEE composite materials is of significant importance. The traditional finite element method (FEM) remains one of the primary approaches for addressing such issues. However, the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision, which inevitably leads to a reduction in computational efficiency. To enhance the computational accuracy and efficiency of the FEM for heterogeneous… More >

  • Open Access

    ARTICLE

    Numerically and Experimentally Establishing Rheology Law for AISI 1045 Steel Based on Uniaxial Hot Compression Tests

    Josef Walek*, Petr Lichý

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3135-3153, 2025, DOI:10.32604/cmes.2025.059889 - 03 March 2025

    Abstract Plastometric experiments, supplemented with numerical simulations using the finite element method (FEM), can be advantageously used to characterize the deformation behavior of metallic materials. The accuracy of such simulations predicting deformation behaviors of materials is, however, primarily affected by the applied rheology law. The presented study focuses on the characterization of the deformation behavior of AISI 1045 type carbon steel, widely used e.g., in automotive and power engineering, under extreme conditions (i.e., high temperatures, strain rates). The study consists of two main parts: experimentally analyzing the flow stress development of the steel under different thermomechanical… More >

Displaying 1-10 on page 1 of 307. Per Page