Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    Finite Element Analysis for Magneto-Convection Heat Transfer Performance in Vertical Wavy Surface Enclosure: Fin Size Impact

    Md. Fayz-Al-Asad1,4, F. Mebarek-Oudina2,*, H. Vaidya3, Md. Shamim Hasan4, Md. Manirul Alam Sarker4, A. I. Ismail5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 817-837, 2024, DOI:10.32604/fhmt.2024.050814

    Abstract The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottom wall. We use a finite element method based on Galerkin weighted residual (GWR) techniques to set up the appropriate governing equations for the present flow model. We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity. We graphically represent the numerical results, such as isotherms, streamlines, velocity profiles,… More >

  • Open Access

    ARTICLE

    Impact Performance Research of Re-Entrant Octagonal Negative Poisson’s Ratio Honeycomb with Gradient Design

    Yiyuan Li1, Yongjing Li1,2, Shilin Yan1,2,*, Pin Wen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3105-3119, 2024, DOI:10.32604/cmes.2024.051375

    Abstract Based on the traditional re-entrant honeycomb, a novel re-entrant octagon honeycomb (ROH) is proposed. The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation, and the results are in good agreement with the experimental ones. The deformation modes, mechanical properties, and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities. The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed. In addition, gradient design along the direction of impact can… More >

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization of 2D Structures Using Convolutional Neural Networks

    Jiaxiang Luo1,2, Weien Zhou2,3, Bingxiao Du1,*, Daokui Li1, Wen Yao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1919-1947, 2024, DOI:10.32604/cmes.2024.048118

    Abstract In recent years, there has been significant research on the application of deep learning (DL) in topology optimization (TO) to accelerate structural design. However, these methods have primarily focused on solving binary TO problems, and effective solutions for multi-material topology optimization (MMTO) which requires a lot of computing resources are still lacking. Therefore, this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design. The framework employs convolutional neural network (CNN) to construct a surrogate model for solving MMTO, and the obtained surrogate model can rapidly generate multi-material structure topologies… More >

  • Open Access

    ARTICLE

    Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite

    Seyed Mohammad Reza Abtahi1, Saeid Ansari Sadrabadi2,*, Gholam Hosein Rahimi1, Gaurav Singh2, Hamid Abyar3, Daniele Amato4, Luigi Federico5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1783-1806, 2024, DOI:10.32604/cmes.2024.047575

    Abstract Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure. One of the methods used in their repairs is the use of layered composites. The composite used must have the necessary strength. Therefore, the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes, including ASME PCC-2, ASME B31.8S, ASME B31.4, ISO 24817 and ASME B31.G. In addition, the experimental tests are replicated numerically using the finite element method. Setting the strain gauges at different distances from the defect location, can reduce the nonlinear effects, More >

  • Open Access

    ARTICLE

    A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector

    Caiping Huang*, Zihan Huang, Wenfeng You

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 299-320, 2024, DOI:10.32604/sdhm.2024.047850

    Abstract This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shear concentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-type penetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which contain straight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars were designed and fabricated, and push-out tests of these eight test specimens were carried out to investigate and compare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL… More >

  • Open Access

    ARTICLE

    Supervised Learning for Finite Element Analysis of Holes under Biaxial Load

    Wai Tuck Chow*, Jia Tai Lau

    Digital Engineering and Digital Twin, Vol.2, pp. 103-130, 2024, DOI:10.32604/dedt.2024.044545

    Abstract This paper presents a novel approach to using supervised learning with a shallow neural network to increase the efficiency of the finite element analysis of holes under biaxial load. With this approach, the number of elements in the finite element analysis can be reduced while maintaining good accuracy. The neural network will be used to predict the maximum stress for holes of different configurations such as holes in a finite-width plate (2D), multiple holes (2D), staggered holes (2D), and holes in an infinite plate (3D). The predictions are based on their respective coarse mesh with… More >

  • Open Access

    ARTICLE

    Large-Scale 3D Thermal Transfer Analysis with 1D Model of Piped Cooling Water

    Shigeki Kaneko1, Naoto Mitsume2, Shinobu Yoshimura1,*

    Digital Engineering and Digital Twin, Vol.2, pp. 33-48, 2024, DOI:10.32604/dedt.2023.044279

    Abstract In an integrated coal gasification combined cycle plant, cooling pipes are installed in the gasifier reactor and water cooling is executed to avoid reaching an excessively high temperature. To accelerate the design, it is necessary to develop an analysis system that can simulate the cooling operation within the practical computational time. In the present study, we assumed the temperature fields of the cooled object and the cooling water to be governed by the three-dimensional (3D) heat equation and the one-dimensional (1D) convection-diffusion equation, respectively. Although some existing studies have employed similar modeling, the applications have… More >

  • Open Access

    ARTICLE

    Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis

    Long Chen1, Yan Yu1, Yanpeng Shang1, Zhonghou Wang1,*, Jing Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 817-846, 2024, DOI:10.32604/cmes.2023.031595

    Abstract Gears are pivotal in mechanical drives, and gear contact analysis is a typically difficult problem to solve. Emerging isogeometric analysis (IGA) methods have developed new ideas to solve this problem. In this paper, a three-dimensional body parametric gear model of IGA is established, and a theoretical formula is derived to realize single-tooth contact analysis. Results were benchmarked against those obtained from commercial software utilizing the finite element analysis (FEA) method to validate the accuracy of our approach. Our findings indicate that the IGA-based contact algorithm successfully met the Hertz contact test. When juxtaposed with the More > Graphic Abstract

    Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis

  • Open Access

    ARTICLE

    Development and Application of a Power Law Constitutive Model for Eddy Current Dampers

    Longteng Liang1,2,3, Zhouquan Feng2,4,*, Hongyi Zhang2,4, Zhengqing Chen2,4, Changzhao Qian1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2403-2419, 2024, DOI:10.32604/cmes.2023.031260

    Abstract Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to their exceptional damping performance and durability. However, the existing constitutive models present challenges to the widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA) software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing a new constitutive model that is both easily understandable and user-friendly for FEA software. By utilizing numerical results obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture the nonlinear More >

  • Open Access

    ARTICLE

    Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods

    Duan Zhu1,2, Zhende Zhu1,2, Cong Zhang1,2,*, Lun Dai1,2, Baotian Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2445-2470, 2024, DOI:10.32604/cmes.2023.030847

    Abstract Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especially under complex geological conditions like dense fault areas. These accidents can cause instability and damage to the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcement technology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. This study utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support, and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite… More >

Displaying 1-10 on page 1 of 128. Per Page