Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (325)
  • Open Access

    ARTICLE

    Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment

    Zhao-Jun Zhang1, Wen-Wei Wang1,2,*, Jing-Shui Zhen1, Bo-Cheng Li1, De-Cheng Cai1, Yang-Yang Du1, Hui Huang2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 105-123, 2025, DOI:10.32604/sdhm.2024.052506 - 15 November 2024

    Abstract This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer (GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone. An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs, and a calculation method based on the conjugate beam method was proposed. The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens. Two methods, epoxy resin bonding, and stud connection, were used to connect the composite… More >

  • Open Access

    PROCEEDINGS

    Characterization and Numerical Simulation of Delamination Propagation Behavior in Carbon Fiber Reinforced Composite Laminates

    Yu Gong1,*, Jianyu Zhang1, Libin Zhao2, Ning Hu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011451

    Abstract Advanced carbon fiber reinforced composite materials are increasingly being used in aerospace and other fields. Composite laminate structure is one of the commonly used configurations, but due to weak interlayer performance, interlayer delamination is prone to occur [1]. The occurrence and growth of delamination will seriously affect the overall integrity and safety of composite structures, making it a focus of attention in the design of laminated structures. Accurately characterizing the delamination mechanical properties of composite laminates and simulating delamination propagation behavior is the basis for damage tolerance design and analysis of composite structures with delamination… More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanical Performance with Robust and Efficient Machine Learning-Assisted Path Planning for Additive Manufacturing of Continuous Fiber Composites

    Xinmeng Zha1, Huilin Ren1,*, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011371

    Abstract Additive manufacturing of continuous fiber composites is an emerging field that enables the tunable mechanical performance of composite structure by flexibly controlling the spatial layout of continuous fibers. Transverse isotropic strengthening is advantageous property of continuous fiber, which is favorable to align with the principal stress orientation. However, the accuracy and efficiency of traditional methods for calculating principal stress field are unguaranteed due to the inherent complexity and variability of geometries, material properties, and operational conditions in additive manufacturing. Therefore, a machine learning-assisted path planning method is proposed to robustly and efficiently generate the continuous… More >

  • Open Access

    PROCEEDINGS

    Mechanical Properties and Failure Modes of 3D-Printed Continuous Fiber-Reinforced Single-Bolt Composite Joints with Curved Paths and Variable Hatch Spaces

    Xin Zhang1,2, Xitao Zheng1,2, Tiantian Yang3, Mingyu Song1,2, Yuanyuan Tian4, Leilei Yan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011277

    Abstract Composite joints are widely used in machinery industries such as aviation, aerospace, and marine, where they transfer main loads as lightweight connectors. Recently, 3D printing with continuous fibers has relieved the required molds in composite manufacturing process and given flexibility to the design of robust composite joints. However, how the curved paths and variable hatch spaces affect the mechanical properties and failure modes of 3D-printed single-bolt composite joints with continuous fibers remains undisclosed. In this study, 3D printing has been introduced to fabricate three types of continuous fiber-reinforced single-bolt composite joints with different paths, including… More >

  • Open Access

    PROCEEDINGS

    Effect of Energy Coupling Mechanism on Molten Pool Stability During Fiber-Diode Hybrid Laser Welding of 2195 Al-Li Alloy

    Yanqiu Zhao1, Yue Li1, Ruizu Liu1, Jianfeng Wang1, Xiaohong Zhan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012476

    Abstract The violent interaction between the high-energy laser beam and the 2195 Al-Li alloy dramatically disturbs the fluctuation behavior of the molten pool during welding process, which results in the poor forming quality and severe porosity defects. In this paper, an emerging coaxial hybrid heat source consisting of a 1080nm fiber laser and a 915nm diode laser is employed in the welding of 2195 Al-Li alloy in order to obtain the more stable molten pool. The distribution characteristics of the fiber-diode laser beam intensity were researched to reveal the energy coupling mechanism. The is-situ observation experiment More >

  • Open Access

    PROCEEDINGS

    Concurrent Design of Composite Structure and Continuous Toolpath for Additive Manufacturing of Fiber-Reinforced Polymer Composites

    Huilin Ren1,2, David W. Rosen2, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010920

    Abstract The advancement of continuous fiber-reinforced polymer additive manufacturing (CFRP-AM) enables the fabrication of structures with complex geometries and superior properties. However, current design methodologies consider toolpath design and structure optimization as separate stages, with toolpath design typically serving as a post-processing step after structure optimization. This sequential methodology limits the full exploitation of fiber reinforced polymer composites (FRPC) capabilities, particularly in achieving optimal structural integrity and manufacturability. In this paper, a manufacturing-oriented method is proposed for designing continuous FRPC structures, in which the structural layout and continuous fiber toolpaths are simultaneously optimized. The integrated design… More >

  • Open Access

    REVIEW

    Oil Palm Fiber Hybrid Composites: A Recent Review

    H. A. Aisyah1,*, E. Hishamuddin1, A. W. Noorshamsiana1, Z. Ibrahim1, R. A. Ilyas2,*

    Journal of Renewable Materials, Vol.12, No.10, pp. 1661-1689, 2024, DOI:10.32604/jrm.2024.055217 - 23 October 2024

    Abstract Composite materials from oil palm fiber enhance sustainability by utilizing renewable resources, reducing dependence on non-renewable materials, and lessening environmental impact. Despite their mechanical and dimensional stability limitations, oil palm fiber-based polymer composites offer significant advantages, such as natural abundance, potential weight reduction, and cost-effectiveness due to local availability and renewability. The growing interest in oil palm hybrid composites, made from blending different fibers, is due to their customizable mechanical and physical properties. Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials. This review investigates More > Graphic Abstract

    Oil Palm Fiber Hybrid Composites: A Recent Review

  • Open Access

    ARTICLE

    Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment

    Martha L. Sánchez1,*, G. Capote2

    Journal of Renewable Materials, Vol.12, No.10, pp. 1791-1810, 2024, DOI:10.32604/jrm.2024.055122 - 23 October 2024

    Abstract The construction sector is one of the main sources of pollution, due to high energy consumption and the toxic substances generated during the processing and use of traditional materials. The production of cement, steel, and other conventional materials impacts both ecosystems and human health, increasing the demand for ecological and biodegradable alternatives. In this paper, we analyze the properties of panels made from a combination of plant fibers and castor oil resin, analyzing the viability of their use as construction material. For the research, orthogonal fabrics made with waste plant fibers supplied by a company… More >

  • Open Access

    PROCEEDINGS

    Numerical Investigation on Blasting Failure and Impact Effects of Marine Launching Airbags

    Jingjing Liu1, Long Yu1,*, Xiaoyan Li2, Jing Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012234

    Abstract Owing to uncontrollable deformation during the launching process, significant hazards such as airbag blast failure can be observed, which can cause severe damage to surrounding structures. Involving gas-solid coupling and nonlinear damage, the analysis and evaluation of airbag blasts are complex. Therefore, an effective method to analyze the possible blast behavior by coupling smoothed particle hydrodynamics (SPH) and the finite element method (FEM) has been presented in this study. First, a single airbag compression model was established to calculate the stiffness curve and the rationality of the numerical method was verified through comparison with experiments.… More >

  • Open Access

    PROCEEDINGS

    Mechanics Model of Face-Core and Inner Core Debonding of Composite Honeycomb Sandwich Structures

    Jian Xiong1,*, Pengcheng Xue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.011785

    Abstract Carbon fiber-reinforced plastic (CFRP) composite sandwich structures, due to their excellent mechanical properties and lightweight characteristics, are widely used in aerospace, marine, automotive, and wind turbine blade structures [1]. Different from traditional sandwich structures, composite honeycomb sandwich structures exhibit brittle properties, potentially leading to sudden and catastrophic debonding failure without any warning. Consequently, the interfaces between the face-core and the inner core may become the weakest parts of the structural system.
    This paper presents a theoretical and experimental investigation into the debonding behavior of the face-core and inner core in composite honeycomb sandwich structures. Based on… More >

Displaying 1-10 on page 1 of 325. Per Page