Gang Li1,#, Zheng Zhou1,#, Yang Zhang2,*, Chuanyun Xu2, Zihan Ruan1, Pengfei Lv1, Ru Wang1, Xinyu Fan1, Wei Tan1
CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1615-1632, 2025, DOI:10.32604/cmc.2025.063109
- 09 June 2025
Abstract Although conventional object detection methods achieve high accuracy through extensively annotated datasets, acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications. Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples. However, the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution, which consequently impacts model performance. Inspired by contrastive learning principles, we propose an Implicit Feature Contrastive Learning (IFCL) module to address this limitation and augment feature diversity More >