Jehangir Arshad1, Ayesha Khan1, Mariam Aftab1, Mujtaba Hussain1, Ateeq Ur Rehman2, Shafiq Ahmad3, Adel M. Al-Shayea3, Muhammad Shafiq4,*
CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1153-1169, 2022, DOI:10.32604/cmc.2022.021917
- 03 November 2021
Abstract Controlling feedback control systems in continuous action spaces has always been a challenging problem. Nevertheless, reinforcement learning is mainly an area of artificial intelligence (AI) because it has been used in process control for more than a decade. However, the existing algorithms are unable to provide satisfactory results. Therefore, this research uses a reinforcement learning (RL) algorithm to manage the control system. We propose an adaptive speed control of the motor system based on depth deterministic strategy gradient (DDPG). The actor-critic scenario using DDPG is implemented to build the RL agent. In addition, a framework… More >