Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (65)
  • Open Access

    ARTICLE

    Two-Stage Client Selection Scheme for Blockchain-Enabled Federated Learning in IoT

    Xiaojun Jin1, Chao Ma2,*, Song Luo2, Pengyi Zeng1, Yifei Wei1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2317-2336, 2024, DOI:10.32604/cmc.2024.055344 - 18 November 2024

    Abstract Federated learning enables data owners in the Internet of Things (IoT) to collaborate in training models without sharing private data, creating new business opportunities for building a data market. However, in practical operation, there are still some problems with federated learning applications. Blockchain has the characteristics of decentralization, distribution, and security. The blockchain-enabled federated learning further improve the security and performance of model training, while also expanding the application scope of federated learning. Blockchain has natural financial attributes that help establish a federated learning data market. However, the data of federated learning tasks may be… More >

  • Open Access

    ARTICLE

    Blockchain-Enabled Federated Learning with Differential Privacy for Internet of Vehicles

    Chi Cui1,2, Haiping Du2, Zhijuan Jia1,*, Yuchu He1, Lipeng Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1581-1593, 2024, DOI:10.32604/cmc.2024.055557 - 15 October 2024

    Abstract The rapid evolution of artificial intelligence (AI) technologies has significantly propelled the advancement of the Internet of Vehicles (IoV). With AI support, represented by machine learning technology, vehicles gain the capability to make intelligent decisions. As a distributed learning paradigm, federated learning (FL) has emerged as a preferred solution in IoV. Compared to traditional centralized machine learning, FL reduces communication overhead and improves privacy protection. Despite these benefits, FL still faces some security and privacy concerns, such as poisoning attacks and inference attacks, prompting exploration into blockchain integration to enhance its security posture. This paper… More >

  • Open Access

    ARTICLE

    Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion

    Ke Li1,*, Xiaofeng Wang1,2,*, Hu Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1391-1407, 2024, DOI:10.32604/cmc.2024.054484 - 15 October 2024

    Abstract In the realm of data privacy protection, federated learning aims to collaboratively train a global model. However, heterogeneous data between clients presents challenges, often resulting in slow convergence and inadequate accuracy of the global model. Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution. Nonetheless, previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers, thereby limiting model performance. To tackle these issues, this study proposes a hierarchical optimization method for federated learning with feature alignment… More >

  • Open Access

    REVIEW

    Enhancing Internet of Things Intrusion Detection Using Artificial Intelligence

    Shachar Bar1, P. W. C. Prasad2, Md Shohel Sayeed3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1-23, 2024, DOI:10.32604/cmc.2024.053861 - 15 October 2024

    Abstract Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI) for IoT devices, methods, and techniques. The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems: Hierarchical Poisoning Attacks and Defenses in Federated Learning

    Yongsheng Zhu1,2,*, Chong Liu3,4, Chunlei Chen5, Xiaoting Lyu3,4, Zheng Chen3,4, Bin Wang6, Fuqiang Hu3,4, Hanxi Li3,4, Jiao Dai3,4, Baigen Cai1, Wei Wang3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1305-1325, 2024, DOI:10.32604/cmes.2024.054820 - 27 September 2024

    Abstract The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency. Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data. However, despite its privacy benefits, federated learning systems are vulnerable to poisoning attacks, where adversaries alter local model parameters on compromised clients and send malicious updates to the server, potentially compromising the global model’s accuracy. In this study, we introduce PMM (Perturbation coefficient Multiplied by Maximum value), a new poisoning attack method that perturbs model More >

  • Open Access

    ARTICLE

    An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking

    Cong Shen1,*, Wei Zhang1,2,*, Tanping Zhou1,2, Yiming Zhang1, Lingling Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4729-4748, 2024, DOI:10.32604/cmc.2024.054434 - 12 September 2024

    Abstract With the increasing awareness of privacy protection and the improvement of relevant laws, federal learning has gradually become a new choice for cross-agency and cross-device machine learning. In order to solve the problems of privacy leakage, high computational overhead and high traffic in some federated learning schemes, this paper proposes a multiplicative double privacy mask algorithm which is convenient for homomorphic addition aggregation. The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants. At the same time, the proposed TQRR (Top-Q-Random-R) More >

  • Open Access

    ARTICLE

    FedAdaSS: Federated Learning with Adaptive Parameter Server Selection Based on Elastic Cloud Resources

    Yuwei Xu, Baokang Zhao*, Huan Zhou, Jinshu Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 609-629, 2024, DOI:10.32604/cmes.2024.053462 - 20 August 2024

    Abstract The rapid expansion of artificial intelligence (AI) applications has raised significant concerns about user privacy, prompting the development of privacy-preserving machine learning (ML) paradigms such as federated learning (FL). FL enables the distributed training of ML models, keeping data on local devices and thus addressing the privacy concerns of users. However, challenges arise from the heterogeneous nature of mobile client devices, partial engagement of training, and non-independent identically distributed (non-IID) data distribution, leading to performance degradation and optimization objective bias in FL training. With the development of 5G/6G networks and the integration of cloud computing… More >

  • Open Access

    ARTICLE

    Blockchain-Enabled Federated Learning for Privacy-Preserving Non-IID Data Sharing in Industrial Internet

    Qiuyan Wang, Haibing Dong*, Yongfei Huang, Zenglei Liu, Yundong Gou

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1967-1983, 2024, DOI:10.32604/cmc.2024.052775 - 15 August 2024

    Abstract Sharing data while protecting privacy in the industrial Internet is a significant challenge. Traditional machine learning methods require a combination of all data for training; however, this approach can be limited by data availability and privacy concerns. Federated learning (FL) has gained considerable attention because it allows for decentralized training on multiple local datasets. However, the training data collected by data providers are often non-independent and identically distributed (non-IID), resulting in poor FL performance. This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Healthcare and Medical Data Collaboration Service System Based on Blockchain and Federated Learning

    Fang Hu1, Siyi Qiu2, Xiaolian Yang1, Chaolei Wu1, Miguel Baptista Nunes3, Hui Chen4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2897-2915, 2024, DOI:10.32604/cmc.2024.052570 - 15 August 2024

    Abstract As the volume of healthcare and medical data increases from diverse sources, real-world scenarios involving data sharing and collaboration have certain challenges, including the risk of privacy leakage, difficulty in data fusion, low reliability of data storage, low effectiveness of data sharing, etc. To guarantee the service quality of data collaboration, this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning, termed FL-HMChain. This system is composed of three layers: Data extraction and storage, data management, and data application. Focusing on healthcare and medical data, a healthcare and… More >

  • Open Access

    ARTICLE

    Cloud-Edge Collaborative Federated GAN Based Data Processing for IoT-Empowered Multi-Flow Integrated Energy Aggregation Dispatch

    Zhan Shi*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 973-994, 2024, DOI:10.32604/cmc.2024.051530 - 18 July 2024

    Abstract The convergence of Internet of Things (IoT), 5G, and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing. While generative adversarial networks (GANs) are instrumental in resource scheduling, their application in this domain is impeded by challenges such as convergence speed, inferior optimality searching capability, and the inability to learn from failed decision making feedbacks. Therefore, a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges. The proposed algorithm facilitates real-time, energy-efficient data processing by More >

Displaying 1-10 on page 1 of 65. Per Page