Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Feature Selection with a Local Search Strategy Based on the Forest Optimization Algorithm

    Tinghuai Ma1,*, Honghao Zhou1, Dongdong Jia1, Abdullah Al-Dhelaan2, Mohammed Al-Dhelaan2, Yuan Tian3

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 569-592, 2019, DOI:10.32604/cmes.2019.07758

    Abstract Feature selection has been widely used in data mining and machine learning. Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly. In this article, a feature selection algorithm with local search strategy based on the forest optimization algorithm, namely FSLSFOA, is proposed. The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest. Next, the fitness function is improved, which not only considers the classification accuracy, but also considers the size of More >

Displaying 1-10 on page 1 of 1. Per Page