Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Switchable Normalization Based Faster RCNN for MRI Brain Tumor Segmentation

    Rachana Poongodan1, Dayanand Lal Narayan2, Deepika Gadakatte Lokeshwarappa3, Hirald Dwaraka Praveena4, Dae-Ki Kang5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5751-5772, 2025, DOI:10.32604/cmc.2025.066314 - 30 July 2025

    Abstract In recent decades, brain tumors have emerged as a serious neurological disorder that often leads to death. Hence, Brain Tumor Segmentation (BTS) is significant to enable the visualization, classification, and delineation of tumor regions in Magnetic Resonance Imaging (MRI). However, BTS remains a challenging task because of noise, non-uniform object texture, diverse image content and clustered objects. To address these challenges, a novel model is implemented in this research. The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN, which effectively captures the… More >

  • Open Access

    ARTICLE

    Integrating Attention Mechanisms in YOLOv8 for Improved Fall Detection Performance

    Nizar Zaghden1, Emad Ibrahim2, Mukaram Safaldin2,*, Mahmoud Mejdoub3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1117-1147, 2025, DOI:10.32604/cmc.2025.061948 - 26 March 2025

    Abstract The increasing elderly population has heightened the need for accurate and reliable fall detection systems, as falls can lead to severe health complications. Existing systems often suffer from high false positive and false negative rates due to insufficient training data and suboptimal detection techniques. This study introduces an advanced fall detection model integrating YOLOv8, Faster R-CNN, and Generative Adversarial Networks (GANs) to enhance accuracy and robustness. A modified YOLOv8 architecture serves as the core, utilizing spatial attention mechanisms to improve critical image regions’ detection. Faster R-CNN is employed for fine-grained human posture analysis, while GANs… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Model for Detection of Brinjal Weed in the Era of Precision Agriculture

    Jigna Patel1, Anand Ruparelia1, Sudeep Tanwar1,*, Fayez Alqahtani2, Amr Tolba3, Ravi Sharma4, Maria Simona Raboaca5,6,*, Bogdan Constantin Neagu7

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1281-1301, 2023, DOI:10.32604/cmc.2023.038796 - 31 October 2023

    Abstract The overgrowth of weeds growing along with the primary crop in the fields reduces crop production. Conventional solutions like hand weeding are labor-intensive, costly, and time-consuming; farmers have used herbicides. The application of herbicide is effective but causes environmental and health concerns. Hence, Precision Agriculture (PA) suggests the variable spraying of herbicides so that herbicide chemicals do not affect the primary plants. Motivated by the gap above, we proposed a Deep Learning (DL) based model for detecting Eggplant (Brinjal) weed in this paper. The key objective of this study is to detect plant and non-plant… More >

  • Open Access

    ARTICLE

    Faster RCNN Target Detection Algorithm Integrating CBAM and FPN

    Wenshun Sheng*, Xiongfeng Yu, Jiayan Lin, Xin Chen

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1549-1569, 2023, DOI:10.32604/csse.2023.039410 - 28 July 2023

    Abstract Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle, distance, complex scene, illumination intensity, and other factors. These targets have few effective pixels, few features, and no apparent features, which makes extracting their efficient features difficult and easily leads to false detection, missed detection, and repeated detection, affecting the performance of target detection models. An improved faster region convolutional neural network (RCNN) algorithm (CF-RCNN) integrating convolutional block attention module (CBAM) and feature pyramid networks (FPN) is proposed to improve the detection and recognition… More >

  • Open Access

    ARTICLE

    Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning

    Atif Naseer1,*, Enrique Nava Baro1, Sultan Daud Khan2, Yolanda Vila3, Jennifer Doyle4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5321-5344, 2022, DOI:10.32604/cmc.2022.020886 - 11 October 2021

    Abstract The Norway lobster, Nephrops norvegicus, is one of the main commercial crustacean fisheries in Europe. The abundance of Nephrops norvegicus stocks is assessed based on identifying and counting the burrows where they live from underwater videos collected by camera systems mounted on sledges. The Spanish Oceanographic Institute (IEO) and Marine Institute Ireland (MI-Ireland) conducts annual underwater television surveys (UWTV) to estimate the total abundance of Nephrops within the specified area, with a coefficient of variation (CV) or relative standard error of less than 20%. Currently, the identification and counting of the Nephrops burrows are carried out manually by… More >

  • Open Access

    ARTICLE

    Spatial-Resolution Independent Object Detection Framework for Aerial Imagery

    Sidharth Samanta1, Mrutyunjaya Panda1, Somula Ramasubbareddy2, S. Sankar3, Daniel Burgos4,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1937-1948, 2021, DOI:10.32604/cmc.2021.014406 - 13 April 2021

    Abstract Earth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms. The progression of deep learning and computer vision methods and the availability of heterogeneous multispectral remote sensing data make the field more fertile for research. With the evolution of optical sensors, aerial images are becoming more precise and larger, which leads to a new kind of problem for object detection algorithms. This paper proposes the “Sliding Region-based Convolutional Neural Network (SRCNN),” which is an extension of the Faster Region-based Convolutional Neural Network (RCNN) More >

Displaying 1-10 on page 1 of 6. Per Page