Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    An Overview of Face Manipulation Detection

    Xingwang Ju*

    Journal of Cyber Security, Vol.2, No.4, pp. 197-207, 2020, DOI:10.32604/jcs.2020.014310 - 07 December 2020

    Abstract Due to the power of editing tools, new types of fake faces are being created and synthesized, which has attracted great attention on social media. It is reasonable to acknowledge that one human cannot distinguish whether the face is manipulated from the real faces. Therefore, the detection of face manipulation becomes a critical issue in digital media forensics. This paper provides an overview of recent deep learning detection models for face manipulation. Some public dataset used for face manipulation detection is introduced. On this basis, the challenges for the research and the potential future directions More >

  • Open Access

    REVIEW

    A Survey of GAN-Generated Fake Faces Detection Method Based on Deep Learning

    Xin Liu*, Xiao Chen

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 87-94, 2020, DOI:10.32604/jihpp.2020.09839 - 11 November 2020

    Abstract In recent years, with the rapid growth of generative adversarial networks (GANs), a photo-realistic face can be easily generated from a random vector. Moreover, the faces generated by advanced GANs are very realistic. It is reasonable to acknowledge that even a well-trained viewer has difficulties to distinguish artificial from real faces. Therefore, detecting the face generated by GANs is a necessary work. This paper mainly introduces some methods to detect GAN-generated fake faces, and analyzes the advantages and disadvantages of these models based on the network structure and evaluation indexes, and the results obtained in More >

Displaying 1-10 on page 1 of 2. Per Page