Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Numerical Simulation of 3D Flow Field and Flow-Induced Noise Characteristics in a T-Shaped Reducing Tee Junction

    Feiran Lv1, Min Wang2, Chuntian Zhe1, Chang Guo3, Ming Gao1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1463-1478, 2023, DOI:10.32604/fdmp.2023.024259 - 30 January 2023

    Abstract The so-called T-shaped reducing tees are typically used to divide, change and control (to a certain extent) the flow direction in pipe networks. In this study, the Ffowcs Williams–Hawkings (FW-H) equation and the Large Eddy Simulation (LES) methods are used to simulate the flow-induced noise related to T-shaped reducing tees under different inlet flow velocities and for different pipe diameter ratios. The results show that the maximum flow velocity, average flow velocity, and vorticity in the branch pipe increase gradually as the related diameter decreases. Strong vorticity and secondary flows are also observed in the More > Graphic Abstract

    Numerical Simulation of 3D Flow Field and Flow-Induced Noise Characteristics in a T-Shaped Reducing Tee Junction

  • Open Access

    ARTICLE

    Numerical Investigation on the Aerodynamic Noise Generated by a Simplified Double-Strip Pantograph

    Jiawei Shi1, Shuai Ge1, Xiaozhen Sheng2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 463-480, 2022, DOI:10.32604/fdmp.2022.017508 - 16 December 2021

    Abstract In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its far-field characteristics, a simplified double-strip pantograph is analyzed numerically. Firstly, the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation (LES) technique. Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion. Based on this, the relationship between the wake vortex and the intensity of the aerodynamic sound source on… More >

Displaying 1-10 on page 1 of 2. Per Page