Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    FST-EfficientNetV2: Exceptional Image Classification for Remote Sensing

    Huaxiang Song*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3959-3978, 2023, DOI:10.32604/csse.2023.038429 - 03 April 2023

    Abstract Recently, the semantic classification (SC) algorithm for remote sensing images (RSI) has been greatly improved by deep learning (DL) techniques, e.g., deep convolutional neural networks (CNNs). However, too many methods employ complex procedures (e.g., multi-stages), excessive hardware budgets (e.g., multi-models), and an extreme reliance on domain knowledge (e.g., handcrafted features) for the pure purpose of improving accuracy. It obviously goes against the superiority of DL, i.e., simplicity and automation. Meanwhile, these algorithms come with unnecessarily expensive overhead on parameters and hardware costs. As a solution, the author proposed a fast and simple training algorithm based… More >

  • Open Access

    ARTICLE

    A More Efficient Approach for Remote Sensing Image Classification

    Huaxiang Song*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5741-5756, 2023, DOI:10.32604/cmc.2023.034921 - 28 December 2022

    Abstract Over the past decade, the significant growth of the convolutional neural network (CNN) based on deep learning (DL) approaches has greatly improved the machine learning (ML) algorithm’s performance on the semantic scene classification (SSC) of remote sensing images (RSI). However, the unbalanced attention to classification accuracy and efficiency has made the superiority of DL-based algorithms, e.g., automation and simplicity, partially lost. Traditional ML strategies (e.g., the handcrafted features or indicators) and accuracy-aimed strategies with a high trade-off (e.g., the multi-stage CNNs and ensemble of multi-CNNs) are widely used without any training efficiency optimization involved, which… More >

Displaying 1-10 on page 1 of 2. Per Page