Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (302)
  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    PROCEEDINGS

    Techno-Economic Analysis of Offshore Hydrogen Energy Storage and Transportation Based on Levelized Cost

    Ziming Hu1, Jingfa Li1,*, Chaoyang Fan1, Jiale Xiao1, Huijie Huang2, Bo Yu1, Baocheng Shi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010823

    Abstract Hydrogen production from offshore wind power is an effective means to address the challenges of wind power grid integration and has emerged as a focal point in the development and research of offshore wind energy in recent years. However, the current state of hydrogen storage and transportation technologies for offshore applications lacks comprehensive economic analysis. This study aims to provide a thorough economic evaluation of these technologies by considering both fixed investment costs and operational and maintenance costs. A levelized cost model is employed to analyze four offshore hydrogen storage and transportation schemes: gas hydrogen… More >

  • Open Access

    PROCEEDINGS

    Research on the Vertical Fracture Propagation Behavior of Deep Offshore Sandstone Reservoirs

    Weishuai Zhang, Fengjiao Wang, Yikun Liu*, Yilin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010789

    Abstract The mechanism of vertical extension in high-volume hydraulic fracturing is of significant importance for the volumetric transformation of low-permeability reservoirs in deep offshore sandstone formations. The complexity of fracture propagation behavior is influenced by the characteristics of discontinuous thin layers in the vertical plane. However, the mechanisms and influencing factors of fracture extension in the vertical direction during high-volume hydraulic fracturing remain unclear. This study integrates true triaxial hydraulic fracturing experiments with acoustic emission (AE) monitoring, employing a nonlinear finite element method to establish a multi-thin interlayer fracturing model based on seepage-stress-damage coupling. It investigates… More >

  • Open Access

    ARTICLE

    An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification

    Essam H. Houssein1,*, Eman Saber1, Nagwan Abdel Samee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2445-2480, 2025, DOI:10.32604/cmes.2025.069184 - 31 August 2025

    Abstract The diagnosis of Dry Eye Disease (DED), however, usually depends on clinical information and complex, high-dimensional datasets. To improve the performance of classification models, this paper proposes a Computer Aided Design (CAD) system that presents a new method for DED classification called (IAOO-PSO), which is a powerful Feature Selection technique (FS) that integrates with Opposition-Based Learning (OBL) and Particle Swarm Optimization (PSO). We improve the speed of convergence with the PSO algorithm and the exploration with the IAOO algorithm. The IAOO is demonstrated to possess superior global optimization capabilities, as validated on the IEEE Congress on More >

  • Open Access

    ARTICLE

    A Time-Domain Irregular Wave Model with Different Random Numbers for FOWT Support Structures

    Shen-Haw Ju*, Yi-Chen Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1631-1654, 2025, DOI:10.32604/cmes.2025.067679 - 31 August 2025

    Abstract This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform (IFFT). Considering the substantial displacement effects that Floating Offshore Wind Turbine (FOWT) support structures undergo when subjected to wave loads, the time-domain wave method is more suitable, while the frequency-domain method requiring IFFT cannot be used for moving bodies. Nonetheless, the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle. Thus, the paper incorporates various numerical schemes, including parallel computing and extrapolation of wave forces… More >

  • Open Access

    ARTICLE

    Computational Modeling to Predict Conservative Treatment Outcome for Patients with Plaque Erosion: An OCT-Based Patient-Specific FSI Modeling Study

    Yanwen Zhu1,#, Chen Zhao2,#, Yishuo Xu2, Zheyang Wu3, Akiko Maehara4, Liang Wang1, Dirui Zhang2, Ming Zeng2, Rui Lv5, Xiaoya Guo6, Mengde Huang1, Minglong Chen7, Gary S. Mintz4, Dalin Tang1,3,*, Haibo Jia2, Bo Yu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1249-1270, 2025, DOI:10.32604/cmes.2025.067039 - 31 August 2025

    Abstract Image-based computational models have been used for vulnerable plaque progression and rupture predictions, and good results have been reported. However, mechanisms and predictions for plaque erosion are under-investigated. Patient-specific fluid-structure interaction (FSI) models based on optical coherence tomography (OCT) follow-up data from patients with plaque erosion and who received conservative antithrombotic treatment (using medication, no stenting) to identify risk factors that could be used to predict the treatment outcome. OCT and angiography data were obtained from 10 patients who received conservative antithrombotic treatment. Five participants had worse outcomes (WOG, stenosis severity ≥ 70% at one-year… More > Graphic Abstract

    Computational Modeling to Predict Conservative Treatment Outcome for Patients with Plaque Erosion: An OCT-Based Patient-Specific FSI Modeling Study

  • Open Access

    ARTICLE

    Innovative Aczel Alsina Group Overlap Functions for AI-Based Criminal Justice Policy Selection under Intuitionistic Fuzzy Set

    Ikhtesham Ullah1, Muhammad Sajjad Ali Khan2, Fawad Hussain1, Madad Khan3, Kamran4,*, Ioan-Lucian Popa5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2123-2164, 2025, DOI:10.32604/cmes.2025.064832 - 31 August 2025

    Abstract Multi-criteria decision-making (MCDM) is essential for handling complex decision problems under uncertainty, especially in fields such as criminal justice, healthcare, and environmental management. Traditional fuzzy MCDM techniques have failed to deal with problems where uncertainty or vagueness is involved. To address this issue, we propose a novel framework that integrates group and overlap functions with Aczel-Alsina (AA) operational laws in the intuitionistic fuzzy set (IFS) environment. Overlap functions capture the degree to which two inputs share common features and are used to find how closely two values or criteria match in uncertain environments, while the… More >

  • Open Access

    REVIEW

    Targeting TAMs & CAFs in melanoma: New approaches to tumor microenvironment therapy

    Yuriy Mayasin1, Maria Osinnikova1, Daria Osadchaya1, Victoria Dmitrienko1, Anna Gorodilova1, Chulpan Kharisova1, Kristina Kitaeva1, Ivan Filin1, Valeria Solovyeva1, Albert Rizvanov1,2,*

    Oncology Research, Vol.33, No.9, pp. 2221-2242, 2025, DOI:10.32604/or.2025.064677 - 28 August 2025

    Abstract Melanoma is a malignant neoplasm with a high propensity to metastasize, arising from melanocytes and contributing significantly to global morbidity and mortality. Despite the demonstrated efficacy of many immunotherapy approaches, these methods rely on direct destruction of tumor cells with minimal impact on the aggregate of nearby non-tumor cells, the extracellular matrix, and blood vessels that form the tumor microenvironment (TME). The TME is known to be heterogeneous and dynamic, exerting both antitumor and pro-tumor effects depending on the specific features and stage of carcinogenesis. TME has been shown in several studies to promote… More >

  • Open Access

    ARTICLE

    Quantum-Resilient Blockchain for Secure Digital Identity Verification in DeFi

    Ahmed I. Alutaibi*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 875-903, 2025, DOI:10.32604/cmc.2025.067078 - 29 August 2025

    Abstract The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes, particularly in Decentralized Finance (DeFi) systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification. This paper proposes a quantum-resilient, blockchain-based identity verification framework designed to address critical challenges in privacy preservation, scalability, and post-quantum security. The proposed model integrates Post-quantum Cryptography (PQC), specifically lattice-based cryptographic primitives, with Decentralized Identifiers (DIDs) and Zero-knowledge Proofs (ZKPs) to ensure verifiability, anonymity, and resistance to quantum attacks. A dual-layer architecture is introduced, comprising an identity layer for credential generation and validation,… More >

  • Open Access

    ARTICLE

    Decentralized Authentication and Secure Distributed File Storage for Healthcare Systems Using Blockchain and IPFS

    Maazen Alsabaan1, Jasmin Praful Bharadiya2, Vishwanath Eswarakrishnan3, Adnan Mustafa Cheema4, Zaid Bin Faheem5, Jehad Ali6,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1135-1160, 2025, DOI:10.32604/cmc.2025.066969 - 29 August 2025

    Abstract The healthcare sector involves many steps to ensure efficient care for patients, such as appointment scheduling, consultation plans, online follow-up, and more. However, existing healthcare mechanisms are unable to facilitate a large number of patients, as these systems are centralized and hence vulnerable to various issues, including single points of failure, performance bottlenecks, and substantial monetary costs. Furthermore, these mechanisms are unable to provide an efficient mechanism for saving data against unauthorized access. To address these issues, this study proposes a blockchain-based authentication mechanism that authenticates all healthcare stakeholders based on their credentials. Furthermore, also… More >

Displaying 11-20 on page 2 of 302. Per Page