Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment

    Zhao-Jun Zhang1, Wen-Wei Wang1,2,*, Jing-Shui Zhen1, Bo-Cheng Li1, De-Cheng Cai1, Yang-Yang Du1, Hui Huang2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 105-123, 2025, DOI:10.32604/sdhm.2024.052506 - 15 November 2024

    Abstract This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer (GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone. An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs, and a calculation method based on the conjugate beam method was proposed. The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens. Two methods, epoxy resin bonding, and stud connection, were used to connect the composite… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Fiber Reinforced Polymer-Confined Concrete under Cyclic Compression Using Cohesive Zone Models

    Mingxu Zhang1, Mingliang Wang2, Wei Zhang3,*

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 599-622, 2024, DOI:10.32604/sdhm.2024.051949 - 19 July 2024

    Abstract This paper examines the mechanical behavior of fiber reinforced polymer (FRP)-confined concrete under cyclic compression using the 3D cohesive zone model (CZM). A numerical modeling method was developed, employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces. Additionally, mixed-mode damage plastic constitutive models were proposed for the concrete potential fracture surfaces and FRP-concrete interface, considering interfacial friction. Furthermore, an anisotropic plastic constitutive model was developed for the FRP composite jacket. The CZM model proposed in this study was validated using experimental data from plain concrete and large More >

  • Open Access

    ARTICLE

    Reinforcement Effect of Recycled CFRP on Cement-Based Composites: With a Comparison to Commercial Carbon Fiber Powder

    Hantao Huang, Zhifang Zhang*, Zhenhua Wu, Yao Liu

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 409-423, 2024, DOI:10.32604/sdhm.2024.048597 - 05 June 2024

    Abstract In this paper, recycled carbon fiber reinforced polymer (CFRP) mixture (CFRP-M, including recycled carbon fiber and powder) and refined recycled CFRP fiber (CFRP-F, mostly recycled carbon fiber) were added to cement to study the influence of addition on the flexural strength, compressive strength, and fluidity of cement-based materials. The recycled CFRP were prepared by mechanically processing the prepreg scraps generated during the manufacture of CFRP products. For comparison, commercial carbon fiber powder was also added in cement and the performance was compared to that of addition of recycled CFRP. The hydration products and strengthening mechanism… More >

  • Open Access

    ARTICLE

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

    Gang Niu1,2, Zhaoyang Jin2, Wei Zhang3,*, Yiqun Huang3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 161-179, 2024, DOI:10.32604/sdhm.2023.044580 - 22 March 2024

    Abstract Amid urbanization and the continuous expansion of transportation networks, the necessity for tunnel construction and maintenance has become paramount. Addressing this need requires the investigation of efficient, economical, and robust tunnel reinforcement techniques. This paper explores fiber reinforced polymer (FRP) and steel fiber reinforced concrete (SFRC) technologies, which have emerged as viable solutions for enhancing tunnel structures. FRP is celebrated for its lightweight and high-strength attributes, effectively augmenting load-bearing capacity and seismic resistance, while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments. Nonetheless, current research predominantly focuses on experimental analysis,… More > Graphic Abstract

    Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model

  • Open Access

    PROCEEDINGS

    GPU-Accelerated Numerical Modeling of Hypervelocity Impacts on CFRP Using SPH

    Yao Lu1, Jianyu Chen2, Dianlei Feng3,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010004

    Abstract CFRPs (carbon fiber reinforced plastics), as a kind of fiber-reinforced plastic, present various advantages over traditional materials regarding the specific strength, stiffness, and corrosion resistance. For this reason, CFRPs are widely used in the space industry, like satellites and space stations, which are easily subjected to the HVIs (hypervelocity impacts) threatened by space debris. In order to mitigate the damage of HVIs and protect the spatial structures, it is necessary to predict the HVI process on CFRPs. Smoothed particle hydrodynamics (SPH) method, as a mesh-free particle-based method, has been widely applied for modeling HVI problems… More >

  • Open Access

    ARTICLE

    Numerical Study on the Behaviour of Hybrid FRPs Reinforced RC Slabs Subjected to Blast Loads

    Mahdi Hosseini1,2,*, Bingyu Jian1,2, Jian Zhang3, Haitao Li1,2,*, Rodolfo Lorenzo4, Ahmad Hosseini5, Pritam Ghosh5, Feng Shen6, Dong Yang1,2, Ziang Wang1,2

    Journal of Renewable Materials, Vol.11, No.9, pp. 3517-3531, 2023, DOI:10.32604/jrm.2023.028164 - 20 July 2023

    Abstract The safety of civilian and military infrastructure is a concern due to an increase in explosive risks, which has led to a demand for high-strength civil infrastructure with improved energy absorption capacity. In this study, a Finite Element (FE) numerical model was developed to determine the effect of hybrid Fibre Reinforced Polymer (FRP) as a strengthening material on full-scale Reinforced Concrete (RC) slabs. The reinforcing materials under consideration were Carbon (CFRP) and Glass (GFRP) fibres, which were subjected to blast loads to determine the structural response. A laminated composite fabric material model was utilized to More > Graphic Abstract

    Numerical Study on the Behaviour of Hybrid FRPs Reinforced RC Slabs Subjected to Blast Loads

  • Open Access

    REVIEW

    A Review of Fibre Reinforced Polymer (FRP) Reinforced Concrete Composite Column Members Modelling and Analysis Techniques

    Mahdi Hosseini1,2,*, Bingyu Jian1,2, Haitao Li1,2,*, Dong Yang1,2, Ziang Wang1,2, Zixian Feng1,2, Feng Shen3, Jian Zhang4, Rodolfo Lorenzo5, Ileana Corbi6, Ottavia Corbi6

    Journal of Renewable Materials, Vol.10, No.12, pp. 3243-3262, 2022, DOI:10.32604/jrm.2022.022171 - 14 July 2022

    Abstract The use of fibre-reinforced polymer (FRP) to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure. Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads. However, the effect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modelling and oversimplification of the model. This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine More >

  • Open Access

    REVIEW

    A Review on Strengthening of Timber Beams Using Fiber Reinforced Polymers

    Bingyu Jian1,2, Ke Cheng3, Haitao Li1,2,*, Mahmud Ashraf2,4, Xiaoyan Zheng1,2, Assima Dauletbek1,2, Mahdi Hosseini1,2, Rodolfo Lorenzo5, Ileana Corbi6, Ottavia Corbi6, Kun Zhou7

    Journal of Renewable Materials, Vol.10, No.8, pp. 2073-2098, 2022, DOI:10.32604/jrm.2022.021983 - 25 April 2022

    Abstract Fiber reinforced polymer (FRP) has been used in the construction industry because of its advantages such as high strength, light weight, corrosion resistance, low density and high elasticity. This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans. Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding. Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars, sheets and More > Graphic Abstract

    A Review on Strengthening of Timber Beams Using Fiber Reinforced Polymers

  • Open Access

    ARTICLE

    Study on the Fire Behavior of Sandwich Wall Panels with GFRP Skins and a Wood-Web Core

    Guangjun Sun, Chuting Wang, Lu Wang*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1537-1553, 2022, DOI:10.32604/jrm.2022.018598 - 20 January 2022

    Abstract To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire, three sandwich walls were tested. One of them was used for static load test and the other two for the one-side fire tests. Besides, temperature probe points were set on the sandwich walls to obtain the temperature distribution. Meanwhile, the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent. The temperature distribution and performance reduction of materials were also considered. More >

  • Open Access

    ARTICLE

    Debonding Failure in FRP Reinforced SHCC Beams Induced from Multiple Flexural-Shear Cracks under Three-Point Bending Test

    Jihong Hu, Mingqing Sun*, Wei Huang, Yingjun Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 191-207, 2021, DOI:10.32604/cmes.2021.015365 - 30 March 2021

    Abstract Strain hardening cement-based composites (SHCC) beam externally bonded with glass fiber-reinforced polymer (FRP) plate was examined under three-point flexural test. The effects of the type of substrate used (plain cement mortar vs. SHCC), the use or not of a FRP plate to strengthen the SHCC beam, and the thickness of the FRP plate on the flexural performances were studied. Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams. The deformation capacity of beams makes little change with an increase in the thickness of… More >

Displaying 1-10 on page 1 of 37. Per Page