Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments

    Chenghai Yu, Zhilong Lu*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3261-3280, 2024, DOI:10.32604/cmc.2024.056413 - 18 November 2024

    Abstract Railway turnouts often develop defects such as chipping, cracks, and wear during use. If not detected and addressed promptly, these defects can pose significant risks to train operation safety and passenger security. Despite advances in defect detection technologies, research specifically targeting railway turnout defects remains limited. To address this gap, we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments. To enhance detection accuracy, we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU (YOLO-VSI). The model employs a state-space model (SSM) to enhance the C2f module in the YOLOv8… More >

  • Open Access

    ARTICLE

    Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks (MANETS)

    Ahmed Alhussen1, Arshiya S. Ansari2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1903-1923, 2024, DOI:10.32604/cmc.2024.049260 - 15 May 2024

    Abstract Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks (MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data… More >

  • Open Access

    ARTICLE

    Faster RCNN Target Detection Algorithm Integrating CBAM and FPN

    Wenshun Sheng*, Xiongfeng Yu, Jiayan Lin, Xin Chen

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1549-1569, 2023, DOI:10.32604/csse.2023.039410 - 28 July 2023

    Abstract Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle, distance, complex scene, illumination intensity, and other factors. These targets have few effective pixels, few features, and no apparent features, which makes extracting their efficient features difficult and easily leads to false detection, missed detection, and repeated detection, affecting the performance of target detection models. An improved faster region convolutional neural network (RCNN) algorithm (CF-RCNN) integrating convolutional block attention module (CBAM) and feature pyramid networks (FPN) is proposed to improve the detection and recognition… More >

  • Open Access

    ARTICLE

    MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes

    Yingkun Song1, Shunhe Hong1, Chentao Hu1, Pingan He2, Lingbing Tao1, Zhixin Tie1,3,*, Chengfu Ding4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5761-5784, 2023, DOI:10.32604/cmc.2023.038910 - 29 April 2023

    Abstract Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems, and road target detection is one of the most difficult tasks in the field of computer vision. The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments. However, because road targets are prone to complicated backgrounds and sparse features, it is challenging to detect and identify vehicle kinds fast and reliably. We suggest a new vehicle detection model called MEB-YOLO, which combines Mosaic and MixUp data augmentation, Efficient Channel Attention (ECA) attention mechanism,… More >

Displaying 1-10 on page 1 of 4. Per Page