Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System

    Laith Abualigah1,2,3,4,5,6,*, Serdar Ekinci7, Davut Izci7,8, Raed Abu Zitar9

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 169-183, 2023, DOI:10.32604/iasc.2023.040291 - 05 February 2024

    Abstract Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability. This study proposes a novel approach for designing a fractional order proportional-integral-derivative (FOPID) controller that utilizes a modified elite opposition-based artificial hummingbird algorithm (m-AHA) for optimal parameter tuning. Our approach outperforms existing optimization techniques on benchmark functions, and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision. Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving More >

  • Open Access

    ARTICLE

    Deep Learning-Based FOPID Controller for Cascaded DC-DC Converters

    S. Hema1,*, Y. Sukhi2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1503-1519, 2023, DOI:10.32604/csse.2023.036577 - 09 February 2023

    Abstract Smart grids and their technologies transform the traditional electric grids to assure safe, secure, cost-effective, and reliable power transmission. Non-linear phenomena in power systems, such as voltage collapse and oscillatory phenomena, can be investigated by chaos theory. Recently, renewable energy resources, such as wind turbines, and solar photovoltaic (PV) arrays, have been widely used for electric power generation. The design of the controller for the direct Current (DC) converter in a PV system is performed based on the linearized model at an appropriate operating point. However, these operating points are ever-changing in a PV system,… More >

  • Open Access

    ARTICLE

    Optimal Dynamic Voltage Restorer Using Water Cycle Optimization Algorithm

    Taweesak Thongsan, Theerayuth Chatchanayuenyong*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 595-623, 2023, DOI:10.32604/csse.2023.027966 - 16 August 2022

    Abstract This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer (DVR) in a three-phase system. The control scheme employs the fractional order, proportional-integral-derivative (FOPID) controller to improve on the DVR performance in order to enhance the power quality in terms of the response time, steady-state error and total harmonic distortion (THD). The result obtained was compared with fractional order, proportional-integral (FOPI), proportional-integral-derivative (PID) and proportional-integral (PI) controllers in order to show the effectiveness of the proposed DVR control scheme. A water cycle optimization algorithm (WCA) was utilized to find… More >

  • Open Access

    ARTICLE

    Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer

    Ahmed M. Agwa1, Mohamed Abdeen2, Shaaban M. Shaaban1,3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5525-5541, 2022, DOI:10.32604/cmc.2022.031580 - 28 July 2022

    Abstract In this study, a bald eagle optimizer (BEO) is used to get optimal parameters of the fractional-order proportional–integral–derivative (FOPID) controller for load frequency control (LFC). Since BEO takes only a very short time in finding the optimal solution, it is selected for designing the FOPID controller that improves the system stability and maintains the frequency within a satisfactory range at different loads. Simulations and demonstrations are carried out using MATLAB-R2020b. The performance of the BEO-FOPID controller is evaluated using a two-zone interlinked power system at different loads and under uncertainty of wind and solar energies.… More >

  • Open Access

    ARTICLE

    Analysis of Brushless DC Motor Using Enhanced Fopid Controller with ALO Algorithm

    K. Prathibanandhi1,*, R. Ramesh2, C. Yaashuwanth3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 543-557, 2022, DOI:10.32604/iasc.2022.025860 - 15 April 2022

    Abstract The delivery of combined benefits of Alternating Current (AC) motor and Direct Current (DC) Motor makes the Brushless Direct Current (BLDC) motors as a unique feature in numerous industrial applications. The possibilities of running the motor at very high speed with extensive operating life span of BLDC with miniature and its compact design make it an un-ignorable option for Electrical Engineers. With many advantages, till managing as well as controlling the speed of BLDC is complicated. This work is intended to come up with an effective control of speed of the motor through Torque Ripple… More >

  • Open Access

    ARTICLE

    Application of Fuzzy FoPID Controller for Energy Reshaping in Grid Connected PV Inverters for Electric Vehicles

    M. Manjusha1,*, T. S. Sivarani2, Carol J. Jerusalin1

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 621-641, 2022, DOI:10.32604/iasc.2022.020560 - 26 October 2021

    Abstract By utilizing Fuzzy based FOPID-controller, this work is designed via the energy reshaping concept for Grid connected Photovoltaic (PV) systems for electric vehicles and this PV module has its own inverter which is synchorised with the utility grid. In grid connected PV system, the mitigation plays an important role where the capacity of PV arrays increases it maintains power quality and it is necessary to comply with some requirements such as harmonic mitigation. Unless a maximum power point tracking (MPPT) algorithm is used, PV systems do not continuously produce their theoretical optimal power. Under various… More >

Displaying 1-10 on page 1 of 6. Per Page