Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (161)
  • Open Access

    ARTICLE

    Cognitive NFIDC-FRBFNN Control Architecture for Robust Path Tracking of Mobile Service Robots in Hospital Settings

    Huda Talib Najm1,2, Ahmed Sabah Al-Araji3, Nur Syazreen Ahmad1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071837 - 29 January 2026

    Abstract Mobile service robots (MSRs) in hospital environments require precise and robust trajectory tracking to ensure reliable operation under dynamic conditions, including model uncertainties and external disturbances. This study presents a cognitive control strategy that integrates a Numerical Feedforward Inverse Dynamic Controller (NFIDC) with a Feedback Radial Basis Function Neural Network (FRBFNN). The robot’s mechanical structure was designed in SolidWorks 2022 SP2.0 and validated under operational loads using finite element analysis in ANSYS 2022 R1. The NFIDC-FRBFNN framework merges proactive inverse dynamic compensation with adaptive neural learning to achieve smooth torque responses and accurate motion control.… More >

  • Open Access

    ARTICLE

    Three-Dimensional Hybrid Model for Wave Interaction with Porous Layer

    Divya Ramesh, Sriram Venkatachalam*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069854 - 29 January 2026

    Abstract A hybrid model combining Fully Non-Linear Potential Flow Theory (FNPT) based on the Finite Element Method (FEM) and the Unified Navier-Stokes equation, using the 3D Improved Meshless Local Petrov Galerkin method with Rankine Source (IMLPG_R), is developed to study wave interactions with a porous layer. In previous studies, the above formulations are applied to wave interaction with fixed cylindrical structures. The present study extends this framework by integrating a unified governing equation within the hybrid modeling approach to capture the dynamics of wave interaction with porous media. The porous layers are employed to replicate the… More >

  • Open Access

    ARTICLE

    The FN1-ITGB4 Axis Drives Acquired Chemoresistance in Bladder Cancer by Activating FAK Signaling

    Xiaoyu Zhang1,#, RenFei Zong1,#, Yan Sun1, Nan Chen2, Kunyao Zhu1, Hang Tong1, Tinghao Li1, Junlong Zhu1, Zijia Qin1, Linfeng Wu1, Aimin Wang1, Weiyang He1,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.072084 - 19 January 2026

    Abstract Objective: While cisplatin-based chemotherapy is pivotal for advanced bladder cancer, acquired resistance remains a major obstacle. This study investigates key molecular drivers of this resistance and potential reversal strategies. Methods: We established GC (Gemcitabine and Cisplatin)-resistant T24-R and UC3-R cell lines from T24 and UM-UC-3 (UC3) cells. Transcriptomic and proteomic analyses identified differentially expressed molecules. Apoptosis and cell viability were assessed by flow cytometry and CCK-8 (Cell Counting Kit-8) assays, while RT-qPCR (Reverse Transcription Quantitative Polymerase Chain Reaction) and Western blot analyzed gene and protein expression. Immunofluorescence evaluated FAK (Focal Adhesion Kinase) phosphorylation, and a… More >

  • Open Access

    ARTICLE

    MRFNet: A Progressive Residual Fusion Network for Blind Multiscale Image Deblurring

    Wang Zhang1,#, Haozhuo Cao2,#, Qiangqiang Yao1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072948 - 12 January 2026

    Abstract Recent advances in deep learning have significantly improved image deblurring; however, existing approaches still suffer from limited global context modeling, inadequate detail restoration, and poor texture or edge perception, especially under complex dynamic blur. To address these challenges, we propose the Multi-Resolution Fusion Network (MRFNet), a blind multi-scale deblurring framework that integrates progressive residual connectivity for hierarchical feature fusion. The network employs a three-stage design: (1) TransformerBlocks capture long-range dependencies and reconstruct coarse global structures; (2) Nonlinear Activation Free Blocks (NAFBlocks) enhance local detail representation and mid-level feature fusion; and (3) an optimized residual subnetwork… More >

  • Open Access

    ARTICLE

    A New Approach for Evaluating and Optimizing Hydraulic Fracturing in Coalbed Methane Reservoirs

    Xia Yan1, Wei Wang1, Kai Shen2,*, Yanqing Feng1, Junyi Sun1, Xiaogang Li1, Wentao Zhu1, Binbin Shi1, Guanglong Sheng2,3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070360 - 27 December 2025

    Abstract In the development of coalbed methane (CBM) reservoirs using multistage fractured horizontal wells, there often exist areas that are either repeatedly stimulated or completely unstimulated between fracturing stages, leading to suboptimal reservoir performance. Currently, there is no well-established method for accurately evaluating the effectiveness of such stimulation. This study introduces, for the first time, the concept of the Fracture Network Bridging Coefficient (FNBC) as a novel metric to assess stimulation performance. By quantitatively coupling the proportions of unstimulated and overstimulated volumes, the FNBC effectively characterizes the connectivity and efficiency of the fracture network. A background… More >

  • Open Access

    ARTICLE

    Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method

    Yunjun Lee1, Sanggyu Cheon2, Woo Chul Chung1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3381-3403, 2025, DOI:10.32604/cmes.2025.073729 - 23 December 2025

    Abstract The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower. The rotating packed bed (RPB) has emerged as a promising alternative due to its small footprint and high mass transfer performance. However, despite its advantages, the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied, and no international design standards currently exist for RPBs. To address this gap, this study performed a comprehensive finite element analysis (FEA) using ANSYS to investigate the structural and dynamic characteristics of an… More >

  • Open Access

    ARTICLE

    A Novel Multi-Objective Topology Optimization Method for Stiffness and Strength-Constrained Design Using the SIMP Approach

    Jianchang Hou1, Zhanpeng Jiang1, Fenghe Wu1, Hui Lian1, Zhaohua Wang2, Zijian Liu3, Weicheng Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1545-1572, 2025, DOI:10.32604/cmes.2025.068482 - 31 August 2025

    Abstract In this paper, a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints, utilizing the Solid Isotropic Material with Penalization approach. Element densities are regulated through sensitivity filtering to mitigate numerical instabilities associated with stress concentrations. A p-norm aggregation function is employed to globalize local stress constraints, and a normalization technique linearly weights strain energy and stress, transforming the multi-objective problem into a single-objective formulation. The sensitivity of the objective function with respect to design variables is rigorously derived. Three numerical examples are presented, comparing the optimized structures in terms More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Inclusion Stiffness and Interfacial Debonding on the Elastic Modulus and Strength of Rubberized Mortar

    Cristian Martínez-Fuentes1, Pedro Pesante2,*, Karin Saavedra3, Paul Oumaziz4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 581-595, 2025, DOI:10.32604/cmc.2025.065746 - 29 August 2025

    Abstract Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties. The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete. This study employs finite element simulations to investigate the elastic properties of rubberized mortar (RuM), considering the influence of inclusion stiffness and interfacial debonding. Different homogenization schemes, including Voigt, Reuss, and mean-field approaches, are implemented using DIGIMAT and ANSYS. Furthermore, the influence of the interfacial transition zone (ITZ) between mortar… More >

  • Open Access

    ARTICLE

    Energy Dissipation and Stiffness Assessment: A Study on RC Frame Joints Reinforced with UHPSFRC

    Trung-Hieu Tran*

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 869-886, 2025, DOI:10.32604/sdhm.2025.064902 - 30 June 2025

    Abstract The design principles for conventional reinforced concrete structures have gradually transitioned to seismic-resistant design since the 1970s. However, until recently, the implementation of strength capacity and ductility design has not been rigorously enforced in many developing countries that are prone to seismic risks. Numerous studies have evaluated the effectiveness of joint behavior based on both ductile and non-ductile designs under cyclic loading. Previous research has demonstrated that enhancing joint regions with Ultra-High Performance Steel Fiber Reinforced Concrete (UHPSFRC) significantly improves the seismic resistance of structural components. This paper presents a detailed analysis of the considerable… More >

  • Open Access

    ARTICLE

    Bird Species Classification Using Image Background Removal for Data Augmentation

    Yu-Xiang Zhao*, Yi Lee

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 791-810, 2025, DOI:10.32604/cmc.2025.065048 - 09 June 2025

    Abstract Bird species classification is not only a challenging topic in artificial intelligence but also a domain closely related to environmental protection and ecological research. Additionally, performing edge computing on low-level devices using small neural networks can be an important research direction. In this paper, we use the EfficientNetV2B0 model for bird species classification, applying transfer learning on a dataset of 525 bird species. We also employ the BiRefNet model to remove backgrounds from images in the training set. The generated background-removed images are mixed with the original training set as a form of data augmentation.… More >

Displaying 1-10 on page 1 of 161. Per Page