Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Federated Machine Learning Based Fetal Health Prediction Empowered with Bio-Signal Cardiotocography

    Muhammad Umar Nasir1, Omar Kassem Khalil2, Karamath Ateeq3, Bassam SaleemAllah Almogadwy4, Muhammad Adnan Khan5, Muhammad Hasnain Azam6, Khan Muhammad Adnan7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3303-3321, 2024, DOI:10.32604/cmc.2024.048035 - 26 March 2024

    Abstract Cardiotocography measures the fetal heart rate in the fetus during pregnancy to ensure physical health because cardiotocography gives data about fetal heart rate and uterine shrinkages which is very beneficial to detect whether the fetus is normal or suspect or pathologic. Various cardiotocography measures infer wrongly and give wrong predictions because of human error. The traditional way of reading the cardiotocography measures is the time taken and belongs to numerous human errors as well. Fetal condition is very important to measure at numerous stages and give proper medications to the fetus for its well-being. In… More >

  • Open Access

    ARTICLE

    Energy Demand Forecasting Using Fused Machine Learning Approaches

    Taher M. Ghazal1,2, Sajida Noreen3, Raed A. Said4, Muhammad Adnan Khan5,*, Shahan Yamin Siddiqui3,6, Sagheer Abbas3, Shabib Aftab3, Munir Ahmad3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 539-553, 2022, DOI:10.32604/iasc.2022.019658 - 03 September 2021

    Abstract The usage of IoT-based smart meter in electric power consumption shows a significant role in helping the users to manage and control their electric power consumption. It produces smooth communication to build equitable electric power distribution for users and improved management of the entire electric system for providers. Machine learning predicting algorithms have been worked to apply the electric efficiency and response of progressive energy creation, transmission, and consumption. In the proposed model, an IoT-based smart meter uses a support vector machine and deep extreme machine learning techniques for professional energy management. A deep extreme More >

  • Open Access

    ARTICLE

    A Posteriori Error Estimation and Adaptive Node Refinement for Fast Moving Least Square Reproducing Kernel (FMLSRK) Method

    Chany Lee1, Chang-Hwan Im2, Hyun-Kyo Jung3, Hong-Kyu Kim4, Do Wan Kim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 35-42, 2007, DOI:10.3970/cmes.2007.020.035

    Abstract In the present study, a residual-based a posteriori error estimation for a kind of meshless method, called fast moving least square reproducing kernel (FMLSRK) method is proposed. The proposed error estimation technique does not require any integration cells in evaluating error norm but recovers the exact solutions in a virtual area defined by a dilation parameter of FMLSRK and node density. The proposed technique was tested on typical electrostatic problems with gird or random node sets and the simulation results show that the proposed error estimation technique can be applied to adaptive node refinement process More >

Displaying 1-10 on page 1 of 3. Per Page