Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access


    Reconfigurable Logic Design of CORDIC Based FFT Architecture for 5G Communications

    C. Thiruvengadam1,*, M. Palanivelan2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2803-2818, 2023, DOI:10.32604/iasc.2023.030493

    Abstract There are numerous goals in next-generation cellular networks (5G), which is expected to be available soon. They want to increase data rates, reduce end-to-end latencies, and improve end-user service quality. Modern networks need to change because there has been a significant rise in the number of base stations required to meet these needs and put the operators’ low-cost constraints to the test. Because it can withstand interference from other wireless networks, and Adaptive Complex Multicarrier Modulation (ACMM) system is being looked at as a possible choice for the 5th Generation (5G) of wireless networks. Many arithmetic units need to be… More >

  • Open Access


    Fault Recognition of Multilevel Inverter Using Artificial Neural Network Approach

    Aravind Athimoolam1,*, Karthik Balasubramanian2

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1331-1347, 2023, DOI:10.32604/iasc.2023.033465

    Abstract This paper focuses on the development of a diagnostic tool for detecting insulated gate bipolar transistor power electronic switch flaws caused by both open and short circuit faults in multi-level inverter time-frequency output voltage specifications. High-resolution laboratory virtual instrument engineering workbench software testing tool with a sample rate data collection system, as well as specialized signal processing and soft computing technologies, are used in this proposed method. On a single-phase cascaded H-bridge multilevel inverter, simulation and experimental investigations of both open and short issues of the insulated gate bipolar transistor components are performed out. In all conceivable switch issues, the… More >

  • Open Access


    Incredible VLSI Design for MIMO System Using SEC-QPSK Detection

    L. Vasanth*, N. J. R. Muniraj

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 955-966, 2022, DOI:10.32604/iasc.2022.022979

    Abstract Multiple Input Multiple Output (MIMO) is an advanced communication technology that is often used for secure data transfer for military and other applications while transmitting data with high error and noise. To address this issue, a step-by-step hybrid Quadrature Phase Shift Keying (QPSK) modulation scheme in the MIMO system for a complex Very Large-Scale Integration (VLSI) format is recommended. When compared to Binary Phase Shift Keying (BPSK), this approach provides twice the data rate while using half the bandwidth. The complexity is lowered through multiplication and addition, as well as error and noise reduction in data transport, and MIMO detection… More >

  • Open Access


    Energy Conservation of Adiabatic ECRL-Based Kogge-Stone Adder Circuits for FFT Applications

    P. Dhilipkumar1,*, G. Mohanbabu2

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1445-1458, 2022, DOI:10.32604/iasc.2022.021663

    Abstract Low Power circuits play a significant role in designing large-scale devices with high energy and power consumption. Adiabatic circuits are one such energy-saving circuits that utilize reversible power. Several methodologies used previously infer the use of CMOS circuits for reducing power dissipation in logic circuits. However, CMOS devices hardly manage in maintaining their performance when it comes to fast switching networks. Adiabatic technology is employed to overcome these difficulties, which can further scale down the dissipation of power by charging and discharging. An Efficient Charge Recovery Logic (ECRL) based adiabatic technology is used here to evaluate arithmetic operations in circuits… More >

  • Open Access


    A Fractional Fourier Based Medical Image Authentication Approach

    Fayez Alqahtani1,*, Mohammed Amoon2,3, Walid El-Shafai4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3133-3150, 2022, DOI:10.32604/cmc.2022.020454

    Abstract Patient medical information in all forms is crucial to keep private and secure, particularly when medical data communication occurs through insecure channels. Therefore, there is a bad need for protecting and securing the color medical images against impostors and invaders. In this paper, an optical medical image security approach is introduced. It is based on the optical bit-plane Jigsaw Transform (JT) and Fractional Fourier Transform (FFT). Different kernels with a lone lens and a single arbitrary phase code are exploited in this security approach. A preceding bit-plane scrambling process is conducted on the input color medical images prior to the… More >

  • Open Access


    Hardware Chip Performance of CORDIC Based OFDM Transceiver for Wireless Communication

    Amit Kumar1, Adesh Kumar2,*, Geetam Singh Tomar3

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 645-659, 2022, DOI:10.32604/csse.2022.019449

    Abstract The fourth-generation (4G) and fifth-generation (5G) wireless communication systems use the orthogonal frequency division multiplexing (OFDM) modulation techniques and subcarrier allocations. The OFDM modulator and demodulator have inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) respectively. The biggest challenge in IFFT/FFT processor is the computation of imaginary and real values. CORDIC has been proved one of the best rotation algorithms for logarithmic, trigonometric, and complex calculations. The proposed work focuses on the OFDM transceiver hardware chip implementation, in which 8-point to 1024-point IFFT and FFT are used to compute the operations in transmitter and receiver respectively. The coordinate… More >

  • Open Access


    The Equal-Norm Multiple-Scale Trefftz Method for Solving the Nonlinear Sloshing Problem with Baffles

    Chao-Feng Shih1, Yung-Wei Chen1,3,*, Jiang-Ren Chang2, Shih-Ping Soon1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 993-1012, 2021, DOI:10.32604/cmes.2021.012702


    In this paper, the equal-norm multiple-scale Trefftz method combined with the implicit Lie-group scheme is applied to solve the two-dimensional nonlinear sloshing problem with baffles. When considering solving sloshing problems with baffles by using boundary integral methods, degenerate geometry and problems of numerical instability are inevitable. To avoid numerical instability, the multiple-scale characteristic lengths are introduced into T-complete basis functions to efficiently govern the high-order oscillation disturbance. Again, the numerical noise propagation at each time step is eliminated by the vector regularization method and the group-preserving scheme. A weighting factor of the group-preserving scheme is introduced into a linear system… More >

  • Open Access


    Ambient Vibration Testings and Field Investigations of Two Historical Buildings in Europe

    Ehsan Noroozinejad Farsangi1,*, Aleksandra Bogdanovic2, Zoran Rakicevic2, Angela Poposka2, Marta Stojmanovska2

    Structural Durability & Health Monitoring, Vol.14, No.4, pp. 283-301, 2020, DOI:10.32604/sdhm.2020.010564

    Abstract In this study, the methodology and results of ambient vibration-based investigations of the historical Tash Mosque in Kosovo and a 3-story historical building in Bulgaria are presented. The investigations include full-scale in situ testing of both structures due to ambient vibrations induced by micro-seismic, wind, traffic, and other human activities. To this aim, Ranger seismometers and Kinemetric products were used. Measurements were performed in both horizontal directions in several points along the structures’ height utilizing a high-speed data acquisition device. All recorded data have been analyzed and processed by the software developed at IZIIS, and then the processed data were… More >

  • Open Access


    Enhanced Portable LUT Multiplier with Gated Power Optimization for Biomedical Therapeutic Devices

    Praveena R1, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 85-95, 2020, DOI:10.32604/cmc.2020.08629

    Abstract Digital design of a digital signal processor involves accurate and high-speed mathematical computation units. DSP units are one of the most power consuming and memory occupying devices. Multipliers are the common building blocks in most of the DSP units which demands low power and area constraints in the field of portable biomedical devices. This research works attempts multiple power reduction technique to limit the power dissipation of the proposed LUT multiplier unit. A lookup table-based multiplier has the advantage of almost constant area requirement’s irrespective to the increase in bit size of multiplier. Clock gating is usually used to reduce… More >

  • Open Access


    Fast Solving the Cauchy Problems of Poisson Equation in an Arbitrary Three-Dimensional Domain

    Cheinshan Liu1,2, Fajie Wang1,3,*, Wenzheng Qu4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 351-380, 2018, DOI:10.3970/cmes.2018.114.351

    Abstract In this paper we propose a novel two-stage method to solve the three-dimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary. The solution is decomposed into a particular solution and a homogeneous solution. In the first stage a multiple-scale polynomial method (MSPM) is used to approximate the forcing term and then the formula of Tsai et al. [Tsai, Cheng, and Chen (2009)] is used to obtain the corresponding closed-form solution for each polynomial term. Then in the second stage we use a multiple/scale/direction Trefftz method (MSDTM) to find the solution of Laplace equation, of which the… More >

Displaying 1-10 on page 1 of 41. Per Page  

Share Link