Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Finite Element Simulation of Temperature Variations in Concrete Bridge Girders

    Hongzhi Liu1, Shasha Wu1, Yongjun Zhang2,*, Tongxu Hu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1551-1572, 2023, DOI:10.32604/fdmp.2023.024430 - 30 January 2023

    Abstract The internal temperature of cast-in-place concrete bridges undergoes strong variations during the construction as a result of environmental factors. In order to determine precisely such variations, the present study relies on the finite element method, used to model the bridge box girder section and simulate the internal temperature distribution during construction. The numerical results display good agreement with measured temperature values. It is shown that when the external temperature is higher, and the internal and external temperature difference is relatively small, the deviation of the fitting line from existing specifications (Chinese specification, American specification, New More >

  • Open Access

    ARTICLE

    Assessment of Seismic Damage in Nativity Church in Bethlehem Using Pushover Analysis

    Belal Almassri1,*, Ali Safiyeh2

    Structural Durability & Health Monitoring, Vol.15, No.4, pp. 349-366, 2021, DOI:10.32604/sdhm.2021.016889 - 23 November 2021

    Abstract This study focuses on advanced finite element (FE) analyses on The Church of Nativity located in Bethlehem (Palestine), one of the most historic structures in the world. To ensure the model quality, a 3D FE model was created using two types of typical commercial software, DIANA FEA and SAP2000. From analyses, one of the expected behaviors for this kind of masonry structure “low modal period” was found. The seismic behavior of the church was studied using pushover analyses, which were conducted using DIANA FEA. The first unidirectional mass proportional load pattern was created in both… More >

  • Open Access

    ARTICLE

    Analytical and FE Modeling of FG Beams Based on A Refined Shear Deformable Beam Theory for Static and Dynamic Analyses of FG BeamsWith Thermoelastic Coupling

    Cong Xie1, Guangyu Shi1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.6, pp. 397-427, 2015, DOI:10.3970/cmes.2015.108.397

    Abstract The static and dynamic thermoelastic analyses of the beams made of functionally graded materials (FGMs) are presented in this paper. Based on the refined third-order shear deformation beam theory proposed by the senior author and the variational principle, the governing equations of FG beams are deduced. The influence of temperature on Young’s modulus and coefficients of thermal expansion is taken into account when FG beams are subjected to thermal loading. The resulting governing equations are a system of the eighth-order differential equations in terms of displacement variables, and the thermoelastic coupling is included in the… More >

  • Open Access

    ARTICLE

    Failure Load of Frp Strengthened Masonry Walls: Experimental Results and Numerical Models

    G. Milani1, T. Rotunno2, E. Sacco3, A. Tralli1,4

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 29-50, 2006, DOI:10.3970/sdhm.2006.002.029

    Abstract Aim of the present work is the evaluation of the ultimate load bearing capacity of masonry panels reinforced with FRP strips. The investigation is developed performing both experimental and numerical studies. In particular, several panels subjected to different loading conditions are tested in the Tests Laboratory of the University of Florence (Italy). Then, numerical models based on combined homogenization and limit analysis techniques are proposed. The results obtained by numerical simulations are compared with experimental data. The good agreement obtained shows that the proposed numerical model can be applied for the evaluation of the ultimate More >

Displaying 1-10 on page 1 of 4. Per Page