Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (230)
  • Open Access

    ARTICLE

    Combined Wind-Storage Frequency Modulation Control Strategy Based on Fuzzy Prediction and Dynamic Control

    Weiru Wang1, Yulong Cao1,*, Yanxu Wang1, Jiale You1, Guangnan Zhang1, Yu Xiao2

    Energy Engineering, Vol.121, No.12, pp. 3801-3823, 2024, DOI:10.32604/ee.2024.055398 - 22 November 2024

    Abstract To ensure frequency stability in power systems with high wind penetration, the doubly-fed induction generator (DFIG) is often used with the frequency fast response control (FFRC) to participate in frequency response. However, a certain output power suppression amount (OPSA) is generated during frequency support, resulting in the frequency modulation (FM) capability of DFIG not being fully utilised, and the system’s unbalanced power will be increased during speed recovery, resulting in a second frequency drop (SFD) in the system. Firstly, the frequency response characteristics of the power system with DFIG containing FFRC are analysed. Then, based… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10

    Trong Thua Huynh*, Hoang Thanh Nguyen, Du Thang Phu

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2281-2298, 2024, DOI:10.32604/cmc.2024.057954 - 18 November 2024

    Abstract In recent years, early detection and warning of fires have posed a significant challenge to environmental protection and human safety. Deep learning models such as Faster R-CNN (Faster Region based Convolutional Neural Network), YOLO (You Only Look Once), and their variants have demonstrated superiority in quickly detecting objects from images and videos, creating new opportunities to enhance automatic and efficient fire detection. The YOLO model, especially newer versions like YOLOv10, stands out for its fast processing capability, making it suitable for low-latency applications. However, when applied to real-world datasets, the accuracy of fire prediction is… More >

  • Open Access

    PROCEEDINGS

    Fast and Accurate Calculation on Competitive Adsorption Behavior in Shale Nanopores by Machine Learning Model

    Hao Yu1,*, Mengcheng Huang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011120

    Abstract Understanding the competitive adsorption behavior of CO2 and CH4 in shale nanopores is crucial for enhancing the recovery of shale gas and sequestration of CO2, which is determined by both the inherent characteristics of the molecules and external environmental factors such as pore size, temperature, and partial pressures of CO2 and CH4. While the competitive adsorption behavior of CO2/CH4 has been analyzed by previous studies, a comprehensive understanding from the perspective of molecular kinetic theory and the efficient calculation for competitive adsorption behavior considering various geological situations is still challenging, limited by the huge computation cost of classical… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Self-Transport of Multi-Scale Droplets Driven by Laplace Pressure Difference and Capillary Suction

    Fujian Zhang1, Ziyang Wang1, Xiang Gao1, Zhongqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011736

    Abstract Spontaneous droplet transport has broad application prospects in fields such as water collection and microfluidic chips. Despite extensive research in this area, droplet self-transport is still limited by issues such as slow transport velocity, short distance, and poor integrity. Here, a novel cross-hatch textured cone (CHTC) with multistage microchannels and circular grooves is proposed to realize ultrafast directional long-distance self-transport of multi-scale droplets. The CHTC triggers two modes of fluid transport: Droplet transport by Laplace pressure difference and capillary suction pressure-induced fluid transfer in microchannels on cone surfaces. By leveraging the coupling effect of the… More >

  • Open Access

    ARTICLE

    Faster AMEDA—A Hybrid Mesoscale Eddy Detection Algorithm

    Xinchang Zhang1, Xiaokang Pan2, Rongjie Zhu3, Runda Guan2, Zhongfeng Qiu4, Biao Song5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1827-1846, 2024, DOI:10.32604/cmes.2024.054298 - 27 September 2024

    Abstract Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial, while the academia has invented many traditional physical methods with accurate detection capability, but their detection computational efficiency is low. In recent years, with the increasing application of deep learning in ocean feature detection, many deep learning-based eddy detection models have been developed for more effective eddy detection from ocean data. But it is difficult for them to precisely fit some physical features implicit in traditional methods, leading to inaccurate identification of ocean eddies. In… More >

  • Open Access

    ARTICLE

    A Fast and Memory-Efficient Direct Rendering Method for Polynomial-Based Implicit Surfaces

    Jiayu Ren1,*, Susumu Nakata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1033-1046, 2024, DOI:10.32604/cmes.2024.054238 - 27 September 2024

    Abstract Three-dimensional surfaces are typically modeled as implicit surfaces. However, direct rendering of implicit surfaces is not simple, especially when such surfaces contain finely detailed shapes. One approach is ray-casting, where the field of the implicit surface is assumed to be piecewise polynomials defined on the grid of a rectangular domain. A critical issue for direct rendering based on ray-casting is the computational cost of finding intersections between surfaces and rays. In particular, ray-casting requires many function evaluations along each ray, severely slowing the rendering speed. In this paper, a method is proposed to achieve direct More >

  • Open Access

    ARTICLE

    DPAL-BERT: A Faster and Lighter Question Answering Model

    Lirong Yin1, Lei Wang1, Zhuohang Cai2, Siyu Lu2,*, Ruiyang Wang2, Ahmed AlSanad3, Salman A. AlQahtani3, Xiaobing Chen4, Zhengtong Yin5, Xiaolu Li6, Wenfeng Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 771-786, 2024, DOI:10.32604/cmes.2024.052622 - 20 August 2024

    Abstract Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems. However, with the constant evolution of algorithms, data, and computing power, the increasing size and complexity of these models have led to increased training costs and reduced efficiency. This study aims to minimize the inference time of such models while maintaining computational performance. It also proposes a novel Distillation model for PAL-BERT (DPAL-BERT), specifically, employs knowledge distillation, using the PAL-BERT model as the teacher model to train two student models: DPAL-BERT-Bi and DPAL-BERT-C. This research enhances the dataset More >

  • Open Access

    ARTICLE

    YOLO-O2E: A Variant YOLO Model for Anomalous Rail Fastening Detection

    Zhuhong Chu1, Jianxun Zhang1,*, Chengdong Wang2, Changhui Yang3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1143-1161, 2024, DOI:10.32604/cmc.2024.052269 - 18 July 2024

    Abstract Rail fasteners are a crucial component of the railway transportation safety system. These fasteners, distinguished by their high length-to-width ratio, frequently encounter elevated failure rates, necessitating manual inspection and maintenance. Manual inspection not only consumes time but also poses the risk of potential oversights. With the advancement of deep learning technology in rail fasteners, challenges such as the complex background of rail fasteners and the similarity in their states are addressed. We have proposed an efficient and high-precision rail fastener detection algorithm, named YOLO-O2E (you only look once-O2E). Firstly, we propose the EFOV (Enhanced Field… More >

  • Open Access

    ARTICLE

    MG-YOLOv5s: A Faster and Stronger Helmet Detection Algorithm

    Zerui Xiao, Wei Liu, Zhiwei Ye*, Jiatang Yuan, Shishi Liu

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1009-1029, 2024, DOI:10.32604/csse.2023.040475 - 17 July 2024

    Abstract Nowadays, construction site safety accidents are frequent, and wearing safety helmets is essential to prevent head injuries caused by object collisions and falls. However, existing helmet detection algorithms have several drawbacks, including a complex structure with many parameters, high calculation volume, and poor detection of small helmets, making deployment on embedded or mobile devices difficult. To address these challenges, this paper proposes a YOLOv5-based multi-head detection safety helmet detection algorithm that is faster and more robust for detecting helmets on construction sites. By replacing the traditional DarkNet backbone network of YOLOv5s with a new backbone… More >

Displaying 1-10 on page 1 of 230. Per Page