Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Two-Level Morphological Description of Bashkir Turkish

    Can Eyupoglu

    Computer Systems Science and Engineering, Vol.34, No.3, pp. 113-121, 2019, DOI:10.32604/csse.2019.34.113

    Abstract In recent years, the topic of Natural Language Processing (NLP) has attracted increasing interest. Many NLP applications including machine translation, machine learning, speech recognition, sentiment analysis, semantic search and natural language generation have been developed for most of the existing languages. Besides, two-level morphological description of the language to be used is required for these applications. However, there is no comprehensive study of Bashkir Turkish in the literature. In this paper, a two-level description of Bashkir Turkish morphology is described. The description based on a root word lexicon of Bashkir Turkish is implemented using Extensible More >

  • Open Access

    ARTICLE

    MapReduce Implementation of an Improved Xml Keyword Search Algorithm

    Yong Zhang1,2, Jing Cai1, Quanlin Li1

    Computer Systems Science and Engineering, Vol.33, No.2, pp. 125-135, 2018, DOI:10.32604/csse.2018.33.125

    Abstract Extensible Markup Language (XML) is commonly employed to represent and transmit information over the Internet. Therefore, how to effectively search for keywords of massive XML data becomes a new issue. In this paper, we first present four properties to improve the classical ILE algorithm. Then, a kind of parallel XML keyword search algorithm, based on intelligent grouping to calculate SLCA, is proposed and realized under MapReduce programming model. At last, a series of experiments are implemented on 7 datasets of different sizes. The obtained results indicate that the proposed algorithm has high execution efficiency and More >

Displaying 1-10 on page 1 of 2. Per Page