Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (127)
  • Open Access

    ARTICLE

    Experimental Study of Forced Convective Heat Transfer in a Copper Tube Using Three Types of Nanofluids

    Zahraa N. Hussain1,*, Jamal M. Ali1,*, Hasan S. Majdi2, Abbas J. Sultan1, H. Al-Naseri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 351-370, 2025, DOI:10.32604/fdmp.2024.056292 - 06 March 2025

    Abstract The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances. This study investigates experimentally the turbulent convective heat transfer characteristics of water-based nanofluids containing TiO2, CuO, and graphene nanoplatelet (GNP) nanoparticles as they flow through a copper tube. Both the dynamic viscosity and thermal conductivity of these nanofluids were modeled and experimentally measured across varying nanoparticle concentrations (0.01, 0.02, and 0.03 vol.%) and temperatures (25°C, 35°C, and 45°C). The findings indicate that the behavior of nanofluids depends on the parameter used for comparison with the base fluid. Notably, both More > Graphic Abstract

    Experimental Study of Forced Convective Heat Transfer in a Copper Tube Using Three Types of Nanofluids

  • Open Access

    ARTICLE

    The Impacts of a Teaching Personal and Social Responsibility Intervention on Social and Emotional Competence in Physical Education: A Quasi-Experimental Study

    Weidong Li1,2, Zh Yeng Chong3, Yaqing Mao4,*, Wanying Zhang4, Wei Xu3, Mingwei Li5, Yiyun Wang6, Huaxia Xiong4

    International Journal of Mental Health Promotion, Vol.27, No.2, pp. 161-177, 2025, DOI:10.32604/ijmhp.2025.059090 - 03 March 2025

    Abstract Background: The Teaching Personal and Social Responsibility (TPSR) model in physical education (PE) has been shown to promote Social and emotional competence (SEC). However, the underlying mechanisms through which TPSR enhances SEC, particularly in university students within the Chinese context, remain unclear. This study aims to explore the effects of TPSR and the mediating roles of self-efficacy and grit in improving SEC. Methods: 71 Chinese university students were in the TPSR group, and 39 in the Traditional Teaching Model (TTM) control group, assessed before and after a 14-week intervention. The Adapted Social and Emotional Competence… More >

  • Open Access

    ARTICLE

    Experimental Study on a Hybrid Battery Thermal Management System Combining Oscillating Heat Pipe and Liquid Cooling

    Hongkun Lu1,2,*, M. M. Noor2,3,4,*, K. Kadirgama2

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 299-324, 2025, DOI:10.32604/fhmt.2024.059871 - 26 February 2025

    Abstract To improve the thermal performance and temperature uniformity of battery pack, this paper presents a novel battery thermal management system (BTMS) that integrates oscillating heat pipe (OHP) technology with liquid cooling. The primary innovation of the new hybrid BTMS lies in the use of an OHP with vertically arranged evaporator and condenser, enabling dual heat transfer pathways through liquid cooling plate and OHP. This study experimentally investigates the performance characteristics of the ⊥-shaped OHP and hybrid BTMS. Results show that lower filling ratios significantly enhance the OHP’s startup performance but reduce operational stability, with optimal… More >

  • Open Access

    ARTICLE

    Modeling and Experimental Study of an Open Two-Phase Loop Driven by Osmotic Pressure and Capillary Force

    Hanli Bi1, Zheng Peng2, Chenpeng Liu3, Zhichao Jia1, Guoguang Li1, Yuandong Guo2, Hongxing Zhang1,*, Jianyin Miao1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 55-70, 2025, DOI:10.32604/fhmt.2024.057933 - 26 February 2025

    Abstract As space technology advances, thermal control systems must effectively collect and dissipate heat from distributed, multi-source environments. Loop heat pipe is a highly reliable two-phase heat transfer component, but it has several limitations when addressing multi-source heat dissipation. Inspired by the transport and heat dissipation system of plants, large trees achieve stable and efficient liquid supply under the influence of two driving forces: capillary force during transpiration in the leaves (pull) and root pressure generated by osmotic pressure in the roots (push). The root pressure provides an effective liquid supply with a driving force exceeding… More >

  • Open Access

    ARTICLE

    Experimental Study of Selective Batch Bio-Adsorption for the Removal of Dyes in Industrial Textile Effluents

    Zakaria Laggoun1,*, Amel Khalfaoui1, Kerroum Derbal2,*, Amira Fadia Ghomrani3, Abderrezzaq Benalia2,4, Antonio Pizzi5

    Journal of Renewable Materials, Vol.13, No.1, pp. 127-146, 2025, DOI:10.32604/jrm.2024.056970 - 20 January 2025

    Abstract This research aims to study the bio-adsorption process of two dyes, Cibacron Green H3G (CG-H3G) and Terasil Red (TR), in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes (TR+CG-H3G). The Cockle Shell (CS) was used as a natural bio-adsorbent. The characterizations of CS were investigated by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET). The adsorption potential of Cockle Shells was tested in two cases (single and binary system) and determined by: contact… More > Graphic Abstract

    Experimental Study of Selective Batch Bio-Adsorption for the Removal of Dyes in Industrial Textile Effluents

  • Open Access

    ARTICLE

    Experimental Study and a Modified Model for Temperature-Recovery Stress of Shape Memory Alloy Wire under Different Temperatures

    Zhi-Xiang Wei1, Wen-Wei Wang2,*, Yan-Jie Xue3, Wu-Tong Zhang2, Qiu-Di Huang2

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 347-364, 2025, DOI:10.32604/sdhm.2024.054559 - 15 January 2025

    Abstract To investigate the performance of utilizing the shape memory effect of SMA (Shape Memory Alloy) wire to generate recovery stress, this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions. The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests. The SMA wire was strained from 2% to 8% initially, and two distinct heating approaches were employed: one using a large current interval for rapid heating and one using… More >

  • Open Access

    ARTICLE

    Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment

    Zhao-Jun Zhang1, Wen-Wei Wang1,2,*, Jing-Shui Zhen1, Bo-Cheng Li1, De-Cheng Cai1, Yang-Yang Du1, Hui Huang2

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 105-123, 2025, DOI:10.32604/sdhm.2024.052506 - 15 November 2024

    Abstract This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer (GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone. An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs, and a calculation method based on the conjugate beam method was proposed. The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens. Two methods, epoxy resin bonding, and stud connection, were used to connect the composite… More >

  • Open Access

    PROCEEDINGS

    High-Rate Multiaxial Behaviour of Electron Beam Melted Ti-6Al-2Sn-4Zr-2Mo: An Experimental Study Using a Novel Tension-Torsion Hopkinson Bar Apparatus

    Yuan Xu1,*, Govind Gour2, Manuela Galati3, Abdollah Saboori3, Antonio Pellegrino4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013220

    Abstract The dynamic behaviour of Ti-6Al-2Sn-4Zr-2Mo additively manufactured by electron beam melting (EBM) is presented in this study considering synchronised tension-torsion loading. A bespoke spilt Hopkinson Tension-Torsion bar is used to generate combined tensile and torsional stress pulses that interact simultaneously with a novel specimen geometry. High-speed digital imaging correlation techniques are employed to assess the high-rate deformation and crack propagation of the specimen. The material's dynamic response was analysed across a spectrum of stress states, including uniaxial tension, shear, and combinations of tension and shear at strain rates ranging between 500 s-1 and 2000 s-1. Comparable More >

  • Open Access

    ARTICLE

    Experimental Study of Thermal Convection and Heat Transfer in Rotating Horizontal Annulus

    Alexei Vjatkin*, Svyatoslav Petukhov, Victor Kozlov

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2475-2488, 2024, DOI:10.32604/fdmp.2024.052377 - 28 October 2024

    Abstract A genuine technological issue–the thermal convection of liquid in a rotating cavity–is investigated experimentally. The experiments are conducted within a horizontal annulus with isothermal boundaries. The inner boundary of the annulus has a higher temperature, thus exerting a stabilising influence on the system. It is shown that when the layer rotation velocity diminishes, two-dimensional azimuthally periodic convective rolls, rotating together with the cavity, emerge in a threshold manner. The development of convection is accompanied by a significant intensification of heat transfer through the layer. It is shown that the averaged thermal convection excitation in the… More > Graphic Abstract

    Experimental Study of Thermal Convection and Heat Transfer in Rotating Horizontal Annulus

  • Open Access

    ARTICLE

    Experimental Study on the Axial Compression Performance of Bamboo Scrimber Columns Embedded with Steel Reinforcing Bars

    Xueyan Lin1,#, Mingtao Wu2,#, Guodong Li1,*, Nan Guo3, Lidan Mei1

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 805-833, 2024, DOI:10.32604/sdhm.2024.051033 - 20 September 2024

    Abstract In this paper, a new type of bamboo scrimber column embedded with steel bars (rebars) was proposed, and the compression performance was improved by pre-embedding rebars during the preparation of the columns. The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens. The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns. When the slenderness ratio increased from 19.63 to 51.96, the failure… More >

Displaying 1-10 on page 1 of 127. Per Page