Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model

    Yuxin Chen1, Weixun Yong1, Chuanqi Li2, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2507-2526, 2023, DOI:10.32604/cmes.2023.025714 - 09 March 2023

    Abstract After the excavation of the roadway, the original stress balance is destroyed, resulting in the redistribution of stress and the formation of an excavation damaged zone (EDZ) around the roadway. The thickness of EDZ is the key basis for roadway stability discrimination and support structure design, and it is of great engineering significance to accurately predict the thickness of EDZ. Considering the advantages of machine learning (ML) in dealing with high-dimensional, nonlinear problems, a hybrid prediction model based on the random forest (RF) algorithm is developed in this paper. The model used the dragonfly algorithm… More >

Displaying 1-10 on page 1 of 1. Per Page